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Abstract

This paper gives an overview of the Philips research system for phoneme-based, large-vocabulary, continuous-
speech recognition. The system has been successfully applied to various tasks in the German and (American) English
languages, ranging from small vocabulary tasks to very large vocabulary tasks. Here, we concentrate on continuous-
speech recognition for dictation in real applications, the dictation of legal reports and radiology reports in German.
We describe this task and report on experimental results. We also describe a commercial PC-based dictation system
which includes a PC implementation of our scientific recognition prototype. In order to allow for a comparison with
the performance of other systems, a section with an evaluation on the standard Wall Street Journal task (dictation of
American English newspaper text) is supplied. The recognition architecture is based on an integrated statistical
approach. We describe the characteristic features of the system as opposed to other systems: 1. the Viterbi criterion
is consistently applied both in training and testing; 2. continuous mixture densities are used without tying or
smoothing; 3. time-synchronous beam search in connection with a phoneme look-ahead is applied to a tree-organized
lexicon.

Zusammenfassung

Dieser Artikel gibt einen Uberblick iiber den phonembasierten Philips-Spracherkenner fiir flieBend gesprochene
Spracheingabe mit groBem Erkennungsvokabular. Das System wurde erfolgreich in mehreren Anwendungen in
deutscher und (amerikanisch) englischer Sprache eingesetzt. Die Anwendungen reichten von kleinem zu sehr
groBem Vokabular. In diesem Artikel beschrianken wir uns auf flieBend gesprochene Sprache in einer echten
Diktieranwendung (Rechtsanwaltsbiiro und Rontgenabteilung, beides in Deutsch). Neben der Beschreibung der
Anwendung und der Auswertung von Versuchsergebnissen gehen wir auch auf ein kommerziell erhiltliches
PC-basiertes System ein, das auf unserem Forschungsprototypen basiert. Um einen Vergleich unseres Prototypen
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mit anderen Systemen zu erleichtern, ist ein Abschnitt iiber unsere Ergebnisse beim Wall-Street-Journal-Test des
ARPA (gelesene Zeitungstexte in amerikanischem Englisch) enthalten. Die Systemarchitektur basiert auf einem
integrierten statistischen Ansatz. Wir legen bei der Darstellung einen Schwerpunkt auf die Aspekte, in denen sich
- unser System von anderen stirker unterscheidet: 1. der Viterbi-ansatz wird konsistent sowohl beim Training als auch
beim Testen verfolgt; 2. wir verwenden kontinuierliche Mischverteilungen ohne “Tying” oder Glittung; 3. bei der
Suche verwenden wir zeitsynchrone Breitensuche in Verbindung mit einer schnellen Vorausschau auf Phonemebene
(“fast look-ahead”) sowie ein als Baum organisiertes Aussprachelexikon.

Résumé

Cet article présente une vue générale du systtme de reconnaissance de parole continue pour de grands
vocabulaires développé par les chercheurs de Philips. Utilisant des modeles de phonémes, ce systéme a été appliqué
avec succes a diverses tiches couvrant 'éventail des petits jusqu’aux trés grands vocabulaires, dans les langues
allemande et anglo-américaine. Ce texte est consacré aux applications de la reconnaissance de la parole a des taches
de dictée réelle, en particulier celles concernant des rapports juridiques et radiologiques dans la langue Allemande.
Ces tiches sont décrites de méme que les résultats obtenus expérimentalement. Nous décrivons également une
version commerciale d’'un systéme de dictée issue de notre prototype et qui a été implémentée sur PC. Afin de
rendre possible une comparaison des performances avec d’autres systémes, une section est consacrée a 1’expérimen-
tation sur des données provenant du quotidien Américain “Wall Street Journal”, incluant les tests réalisés lors de la
procédure d’évaluation de novembre 1993. L’architecture générale est fondée sur une approche statistique intégrée.
Par rapport a d’autres systémes, les caractéristiques majeures qui se dégagent de notre systéme sont: 1. I’application
constante du critére de Viterbi aussi bien pour I'apprentissage que pour la reconnaissance; 2. 'usage de mixtures de
densités de probabilité continues sans recourir a4 aucune forme de partage ou de lissage; 3. un décodage synchrone
avec une technique d’élagage en faisceau utilisée conjointement avec une organisation en arbre du lexique et une
méthode d’anticipation rapide du phonéme suivant,

Keywords: Continuous speech recognition; Large vocabulary recognition; Acoustic model; Hidden Markov model
(HMM); Language model; Search; Dictation

1. Introduction The characteristic features of the approach to
. be presented are:

For‘ 'large-vocabulary, contxnuous-sp?ech — A large-size acoustic vector capturing first and
recognition, there are a number of operational second-order derivatives is used. There is no
gr(?totype §ystems n resgarch, some of them par- splitting into separate streams as in most other
ticipating in the ARPA “ research programme or systems that use tied mixtures.
its evaluations. For the recognition of isolated — The Viterbi criterion is used both in training
word input o_f around 30K ('30 000) words, there and recognition. Continuous mixture densities
are commercial systems available from IBM and are used in a way that amounts to what could
Dragon Systems. Like the above mentioned sys- be called ‘statistical template matching’.
tems', the prototype sy§tem descrlb.ed' in this pa- — Linear discriminant analysis (LDA) improves
per is based on techniques of statistical pattern the acoustic analysis.
recognition and stochastic modelling, where train- — For bigram language modelling, a non-linear
ing data are heavily exploited and local decisions interpolation has been developed that gives
are avoided as far as possible. See (Ney, 1993b; consistently lower perplexities than linear in-
Ney et al., 1994a) for references. terpolation, especially for small training cor-

pora.

2 Advanced Research Projects Agenéy (U.S.-American or- T The concept of time-synchronous beam ‘seaTCh
ganization funding, among others, speech recognition and has been eXtendefi towaFdS a tree organization
understanding research) of the pronunciation lexicon so that the search
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effort is significantly reduced. A phoneme
- look-ahead technique results in an additional
improvement. A PC based implementation (cf.
Section 9) underlines the efficiency of this
search strategy.
The organization of the paper is as follows. We
first summarize the statistical approach to speech
recognition and the experimental conditions of
our dictation task. We then describe the four
main entities of our system: acoustic analysis,
acoustic-phonetic modelling, language modelling
and search; experiments are included within the
sections. To allow a comparison with the perfor-
mance of other systems, a section on our Wall
Street Journal system including the November
1993 evaluation (dictation benchmark test, Amer-
ican English) is supplied. The final section de-
scribes a PC based implementation of our system.

2. System architecture

Fig. 1 presents a block diagram of the system-

architecture. In the pre-processing step of acous-
tic analysis, the speech signal is transformed into
a sequence of acoustic vectors X,...,Xr (over time
t=1,.,T). As the speech signal, and thus this
sequence of observations, is not exactly repro-
ducible, a statistical approach is used to model its
generation. Statistical decision theory tells that in
order to minimize the probability of recognition

Speech Input

Acoustic Analysis

Xps weeo XT
Language Model
Search Pr(»%l_ o W) J
argmax {Pr(w‘, s wN)
. Acoustic Model
Pr(Xseee Xepd W seers % ) Pr(X oo X W e WN)J

v

Recognized Text

Fig. 1. System architecture.

errors, one should decide for the word sequence
W=w,,..,wy (of unknown length N) that maxi-
mizes (Jelinek, 1976; Jelinek et al., 1992)

Pr(W e Wyl X oo X 1)

B Pr(xy e X7 Wy e Wy )PT(W 5wy

Pr(xyyXy)

As the denominator is constant for a given
observation, this amounts to finding w,...,wy that
maximizes
Pr(W1pees Wi ) PE( X 5oy X W 5o Wy ) (1)

The first term, the a priori probability of word
sequences Pr(w,..,wy), is independent of the
acoustic observations and is completely specified
by the language model. It reflects the system’s
knowledge of how to concatenate words of the
vocabulary to form whole sentences and thus
captures syntactic and semantic restrictions.

The acoustic-phonetic modelling is reflected by
the second term. Pr(x,,..., X z|W1,...,wy) is the con-
ditional probability of observing the acoustic vec-
tors x,,...,x; when the words wy,...,wy were ut-
tered. These probabilities are estimated during
the training phase of the recognition system. A
large-vocabulary system typically is based on sub-
word units like phonemes, which are concate-
nated according to the pronunciation dictionary
to form word models.

The decision on the spoken words must be
taken by an optimization procedure which com-
bines information of the language model and of
the acoustic model, the latter being based on the
phoneme models and the pronunciation dictio-
nary. The optimization procedure is usually re-
ferred to as search in a state space defined by the
knowledge sources.

3. Experimental conditions

Before we focus on our dictation task, let us
briefly describe the other conditions under which
our speech recognition system is used. While it
remains essentially the same system, several obvi-
ous modifications reflect the varying needs of
these tasks. Giving two obvious examples, we use
(“soft”) m-gram language models for dictation
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Table 2
Effect of LDA on the word-error rate (in %). About 3 hours
of training material, 4 000 densities (cf. also Table 9)

Speaker no LDA LDA
M-60 12.3 10.4
M-61 : 15.0 123

tion for improving the discrimination between
classes in a high-dimensional vector space (Duda
and Hart, 1973, pp. 114 ff.). The basic idea is to
find a linear transformation such that a suitable
criterion of class separability is maximized. The
transformation is obtained as the eigenvector de-
composition of the product of two scatter or
covariance matrices, the total-scatter matrix and
the inverse of the average within-class scatter
matrix. Recently, this technique has been success-
fully applied to speech recognition, for both small
(Hunt and Lefebvre, 1989; Haeb-Umbach et al.,
1993) and large-vocabulary tasks (Haeb-Umbach
and Ney, 1992).

When applying LDA to speech recognition,
the choice of the proper classes to be discrimi-
nated is not obvious — are they whole phonemes,
phoneme states or the mixture components of a
state? QOur experiments indicated that the states
are a good choice. The computation of the LDA
transform is further complicated by the time
alignment problem. Therefore, we use a three-
step training. With our standard iterative training
we obtain a segmentation of the training data,
which provides the class labels for the subsequent
estimation of the LDA transform. The third step
is a new iterative training using LDA-trans-
formed acoustic vectors.

Table 2 shows the improvement by LDA. Note
that since a single class-independent transforma-
tion matrix is used, the matrix multiplication is
done in the acoustic front end once per frame
rather than for each log-likelihood calculation.
Even for speaker-independent recognition, one
single transformation gives satisfactory results.

5. Acoustic-phonetic modelling

The acoustic conditional probabilities
Pr(x,,...,x7|wy,...,wy) are obtained by concatenat-

ing the corresponding word models, which again
are obtained by concatenating phoneme models
according to the pronunciation lexicon. We use
inventories of 40—-50 phoneme symbols including
symbols for silence and maybe glottal stop. (For
the English language, triphones are used as basic

“units; cf. Section 8.2.) As in many other systems,

these subword units are modeled by stochastic
finite-state automata, the so-called Hidden
Markov Models (HMMs) (Baker, 1975; Jelinek,
1976; Levinson et al., 1983).

For each state s of the HMM, there is an
emission probability density g(x,|s) of generating
the vector x,. The phoneme unit shown in Fig. 2
has a tripartite structure in order to take account
of left and right acoustic dependences. Each of
the three parts consists of two states with identi-
cal emission distributions. The transition proba-
bilities, which allow loop, jump and skip, are tied
over all states. Unlike most other HMM struc-
tures, this structure has a simple duration model
whose most likely duration of 60 ms is close to
the average phoneme duration.

No pronunciation variants are used in the pro-
nunciation lexicon, such that the emission distri-
butions have to model deviations from the stan-
dard pronunciation as well as coarticulatory ef-
fects. The best results were obtained for continu-
ous mixture densities

q(x,ls)= ch(s)bk(xtls),
- k
with 0 <ci(s) <land ) c,(s) =1, (3)
k

where the so-called component densities b,(-|-)
are unimodal densities such as Gaussians or (as

Fig. 2. Topology of phoneme HMM.
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Table 3

Error-rate as a function of training set size and number of
densities. Speaker M-60, vocabulary size 12 073 words, test-set
perplexity 113

Training material 0.7h 12h 20h 32h 95h

No. of densities

4 000 " 161% 144% 13.1% 123% 11.4%
8 000 — 13.4% 129% 11.7% 10.8%
16 000 — — — 11.6% 10.1%
32 000 — — — — 10.0%
64 000 — — - -— 9.1%

in our system) Laplacians:

bu(xi9) =1 5,
lx,(n) —r, {(n)l

Xexp(—Z »

1
Vn

)- (4)
n n

n is the index of the vector components. Each
density is completely specified by its location
vector r, .. The vector of absolute deviations,
(vl,...,vN)T, is assumed to be independent of both
the component densities and the states and thus
serves as an overall scaling for the acoustic vec-
tors.

In contrast to other systems, the Viterbi crite-
rion is used both in training and recognition. This
applies even to the level of mixture components,
such that the sum over the component densities
in Eq. (3) is replaced by their maximum (Ney,
~ 1993b).

Table 3 shows how the error-rate > depends on
the training-set size and the acoustic resolution.
Monophones (i.e. context-independent pho-
nemes) were used here; we expect improvements
with context-dependent phonemes.

While we typically develop our system on the
speaker-dependent German dictation task, we
also successfully benchmarked our system on both
the speaker-dependent and the speaker-indepen-
dent part of the well-known American English

3 As usual, the word error-rate is defined as the ratio
(deletions + insertions + substitutions) / spoken words. In con-
trast to word accuracy, defined as correctly recognized words /
spoken words, erroneously inserted words count as errors.

DARPA (Defense Advanced Research Projects
Agency) RM (résource management) task (Au-
bert et al., 1993; Ney, 1993b) and on the ARPA
Wall Street Journal (WSJ) task. The major modi-
fications of our system and the WSJ benchmark
results are described in Section 8.

6. Language modelling

The language model provides, for each word
sequence, an estimate of probabilities Pr(w,...,w,)
usually expressed by m-gram models (cf. below)
which have established themselves as both a good
way to reliably estimate the parameters and to
keep them limited so they can be stored and
retrieved. In view of the sizes of available cor-
pora, we typically use word bigram models or
category-based bigram models (bigram class mod-
els) with automatically generated classes (Kneser
and Ney, 1993). An overview about more general
techniques in language modelling can be found in
(Ney et al., 1994b).

While maximum-likelihood estimation would
suggest to take relative frequencies of bigram
counts, it is common knowledge that these are
particularly bad estimates and that smoothing is
important. The smoothing method that we use is
different from those used in other systems and is
explained in the following section in more detail.
With this method, we achieve better results than
with backing-off (Katz, 1987) or linear interpola-
tion.

6.1. Stochastic bigram and trigram models

The task of providing probabilities Pr(w,,....w,)
> 0 is usually reduced to the problem of estimat-
ing conditional probabilities Pr(w;w,...w;_;)
with given history w,...,w;_; which determines
the joint probabilities by the product

n
Pr(wy,eW,) = 1—[1 Pr(w;lwy,...w;_1).
j=
Because of the limited training data one has to
share the same distribution for different histories,
e.g. histories which coincide in the last m —1
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positions. Depending on the amount and struc-
ture of training data we typically use only m-gram
models with m =2 (bigram) or m =3 (trigram).
Even for such small history lengths, there are a
lot of possible bi- or trigram events which have
not been observed during training before. So we
are faced with the problem of guessing a positive
probability for an event which has never been
observed before. For this we have to use further
knowledge about the stochastic process we want
to describe.

Beside the well known technique of linear
interpolation, the theory of most of the com-
monly used estimators was established in 1953 by
Good (1953) who worked out an idea of Alan M.
Turing. But in order to come up with practically
useful ‘Turing—Good’ estimators one has to use
some kind of smoothing.

The non-linear interpolation scheme used in
our system has the advantage to do this in a way
which is easy to implement. More precisely, in
case of bigram and trigram models (Meier and
Ney, 1994), it is possible to make a first-order
approximation of the Turing—-Good formula which
simplifies it to subtracting a constant d (typically
between zero and one) from counts greater than
d. Redistributing the gained probability mass to
some a priori distribution g leads to the concept
of non-linear interpolation as introduced by (Ney
and Essen, 1991).

To be more explicit, e.g. for a bigram applica-
tion, let us denote the count of some bigram
(v,w) in a given training corpus by N(v,w). Then
we may define the estimator for a bigram lan-
guage model by

N(vw) —d+B,qa(w)
N(v)

p(wlv): = ;fN(V,w)>d,

if N(v):=X,N(vw) is assumed to be positive
and B, is chosen to assure the constraint
¥, p(wlv) = 1. Here q is usually chosen to be a

wniaram  dictrihntion . Definineg  a  discounting

function 8(v,w): = min{d N(v,w)} we easily get

- B,=1L,8(r,w) as well as

N(v.w) = 8(v.w) +B,a(w)
N(v)

which describes a general interpolation scheme
between g and the relative frequency distribu-
tion. The name ‘non-linear interpolation’ indi-
cates the difference to the well-known ‘linear
interpolation’ with parameter e which precisely
appears if we choose 8(v,w): = aN(y,w).

p(wlv) =

b

6.2. Application-specific experimental results

From the theoretical derivation it is clear that
non-linear interpolation is designed to incorpo-
rate different statistical knowledge (e.g. about
unigram and bigram) in a way which respects the
advantage of the Turing—Good estimator of pro-
viding better estimates even with relatively small
training data. _ ,

In fact, in practice there are typically only
small training corpora available which reflect the
application and the speaker-specific characteris-
tics. To compare the performance of non-linear
interpolation and linear interpolation, we took
spoken sentences from two lawyers (M-60 and
M-61) and two radiologists (M-72 and M-73) as
well as a larger corpus of written radiology re-
ports (REP; see Table 4) to calculate the differ-
ent test-set perplexities. (Recall that the loga-
rithm of perplexity can be viewed as the empirical
entropy for the actual test set.) As seen in Table
6, in all cases non-linear interpolation yields sig-
nificantly lower (i.e. better) perplexities than lin-
ear interpolation. Furthermore, the relative gain
becomes smaller for larger training material.

Table 4

Data sizes in words for specific applications

Data Test LM training Lexicon
M-60 2 781 61 130 12073
M-61 3039 71 208 15 188
M-72 2095 50192 13 095
M-73 2296 54 375 13 095
REP 569 767 915 858 40 630
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Table 5

Test-set perplexity for m-gram language models (m =1,2,3)
Non-linear Unigram Bigram Trigram
M-60 818.9 112.2 81.2
M-61 9334 183.2 151.2
M-72 1065.9 286.9 264.3
M-73 531.8 41.9 30.7
REP 832.4 91.9 66.5
Table 6

Test-set perplexity for different discounting methods
Bigram-LM Linear Non-linear
M-60 127.0 112.2

M-61 206.4 ‘ 183.2

M-72 299.8 286.9

M-73 474 419

REP 97.4 91.9

It should be noted that the unigram distribu-
tion g used in the experiments was also calcu-
lated with a non-linear interpolation scheme us-
ing a uniform distribution as background knowl-
edge (see Table 5).

Of course all techniques may be applied also
to trigrams using a conditional bigram distribu-

Table 7 ‘
Test-set perplexities when using only written training corpora
(“REP”; without data as being dictated)

Test set Unigram Bigram
M-72 1822.5 705.2
M-73 1599.3 365.1

tion as the general background model. Even for
small corpora it is possible to have a gain in
perplexity if the training material gives a good

- coverage of frequently used phrases in a very

special application (see Table 5).
To indicate that there is a great difference

‘between specific well-tailored training material

and general application-specific data, we used the
unigram and bigram models trained on written
radiology reports (REP) to calculate test-set per-
plexities on spoken radiology reports of M-72 and
M-73. To make test results comparable with Table
5, we used the lexicon of the M-72/M-73 corpus.

Tables 7 and 5 show that the language models
trained on a small-sized corpus of speaker spe-
cific sentences that were transcribed as spoken
(“as-it-is files”) perform much better than the
models trained on the larger speaker indepen-

500 T T T T T T T
+ Trigram ——
Bigram -+--
450 g
) a00 ff _
<';
350 Ht -

300

Perplexity

250

200

150

1 1 1 1

100 1 ) 1
5 10 15

20
Number of Words in Million

25 30 35 40

Fig. 3. Test-set perplexity for bigram and trigram LM depending on training set size.
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dent written text. This seems to indicate that
specific data material is more important than
some general kind of knowledge. Another reason
for this effect might be the general difference
between spoken and written language. Most obvi-
ous examples for this difference (like abbrevia-
tions and punctuation) stem from some kind of
mismatch between the words in written and spo-
ken text.

6.3. Perplexity gain for large corpora

Although the techniques just presented per-
form quite well with small training material, there
is still a strong gain in perplexity when using
larger training corpora. To see the dependence
between language model performance and train-
ing size we took different sized subcorpora of up
to 39 million words from the well-known Wall
Street Journal corpus.

Fig. 3 shows the significant loss in perfor-
mance when only small corpora are used for
training: the more (application specific) data, the
better. This is even more true for a trigram model.

7. The search procedure

Time-synchronous beam search has success-
fully been used in the Philips continuous-speech
recognizer for several years (Ney et al., 1992b).
We found that it is efficient also for 10K or more
words (Ney et al., 1992a). First, all knowledge
sources are available at the same level in the
integrated search. Second, all hypotheses refer to
the same acoustic vector sequence in timeé-syn-
chronous search. These two key points allow a
drastic reduction of the actual search space by
pruning less promising hypotheses.

Recently, we increased the vocabulary size in
our WSJ benchmark system up to 45K words.
Our positive-experiences are described in Section
8.6.

7.1. Tree lexicon

A straight-forward approach of constructing
the search space is to synthetically build up word

models from concatenating the appropriate
phoneme models as given by the pronunciation -
lexicon. In this space, different copies of the
same phoneme occur due to the lexical con-
straints. For similar reasons, the language model
restrictions make it necessary to introduce several
copies of the same word, representing contexts
that allow for different continuations. This orga-
nization, where each state belongs to exactly one
word, will be called linear lexicon.

When the lexicon grows larger, e.g. from 1K to
10K words, it is more efficient to arrange the
pronunciation lexicon as a tree of phonemes (tree
lexicon). The compression factor for the tree lexi-
con as compared to the linear lexicon is even
surpassed by the reduction in the number of
active states, because most of the active states are
located in the word beginnings (near the tree’s
root).

7.2. Forest search

The tree organization of the lexicon also has
an undesired consequence for the organization of
the search space. In contrast to a linear lexicon,
the word identities are unknown at the word
beginnings. Particularly for a bigram language
model, this means that separate tree copies have
to be held, depending on the predecessor word.
While the potential search space is blown up by a
factor of the vocabuiary size, e.g. 10K, the actual
search space grows much more moderately, typi-
cally by only a factor of 2. The tree organization
is thus very beneficial for large-vocabulary tasks.
A detailed discussion with experiments is given in
(Ney et al., 1992a).

7.3. Phoneme look-ahead

The phoneme look-ahead additionally reduces
the number of active states by estimating whether
a started phoneme will or will not survive the
next few time frames (in our system typically 60
ms). In a first step, the likelihood of each
phoneme ahead of the current time frame is
estimated by carrying out a time-alignment. Then,
each time a state hypothesis crosses a phoneme
boundary, these figures are used as probability
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estimates for the best path extensions both of this
and of any other state, which in turn are used to
perform an additional pruning (Haeb-Umbach
and Ney, 1991).

For the phoneme look-ahead, the original
phoneme models are used without any simplifica-
tion. Note that, in particular for the case of
monophones, the number of generic states is
much smaller than the number of state hypothe-
ses. (Conversely, a non-modified application to a
system with many triphones is not advantageous.)
The likelihood scores are stored for later use in
the detailed match. Like the conventional search,
the look-ahead is sped up by beam pruning; in
addition, there is no need for book-keeping as in
the detailed match. To further reduce computa-
tion, the look-ahead is carried out only every
other time frame. For the omitted time frame,
the look-ahead scores of the previous time frame
are used.

7.4. Peaks in the search space: histogram pruning

Conventional beam pruning uses a pre-speci-
fied constant threshold to specify the beam of
active hypotheses: At each time frame, exactly
the hypotheses with log-probabilities close enough
to the optimum at that time remain active, 1.e.
are considered for expansion at the next time; the
others are pruned.

When the pruning threshold is chosen to be
large enough to avoid search errors, i.e. when the
optimal path is only rarely being lost due to
pruning, large peaks in the actual number of
active hypotheses can occur. We frequently ob-
served peaks of 1 or 2 million hypotheses and
roughly 100 times larger than the average number
of hypotheses, especially for non-speech sounds
or corrupted speech.

We thus introduced an additional pruning cri-
terion: a pre-specified upper limit on the number
of active points. We called this histogram pruning
because we use a histogram on the hypotheses’
scores in order to determine a pruning threshold
(below a given value) such that the number of
active hypotheses remains always below a ngen
maximal number of active hypotheses.

Quite astonishingly, the experiments indicated

that it is possible to choose relatively small maxi-
mal numbers for the hypotheses without intro-
ducing search errors. 30000 hypotheses maximum
is a typical value for our dictation research proto-
type. Besides the significant reduction in peak
storage size needed, there is a reduction in the
average search costs of about 30%. A detailed
description of the experiments is given elsewhere
(Steinbiss et al., 1994). .

7.5. Language-model (LM) look-ahead: smearing

the expected LM probabilities over the tree

In the forest search organization for stochastic
n-gram language models (n > 1), the potential
search space consists of a large number of copies
of the phonetic tree consisting of the recognition
vocabulary. E.g., for a vocabulary of V' words and
a bigram LM, ie. n=2, there are V" !=V
copies of the phonetic tree. Informal experiments
indicated that, due to beam pruning, the number
of active hypotheses grows much smaller with n,
like roughly a factor of 2 when going from uni-
gram to bigram LM.

The word identities in the tree are only known
at the word ends. Adding the LM log probabili-
ties at the word ends leads to several effects that
are disadvantageous for the search:

— As compared to linear search, the LM is em-
ployed with one word delay. But knowledge
should be incorporated as early as possible.

— The scores of hypotheses change drastically
when a word end is encountered. Especially,
the pruning has to be larger than the largest -
LM score (“score” being defined in this paper
as negative log probability).

— The same effect causes the examination of
many useless word start hypotheses during si-
lence after a word.

A remedy for all these pains is the incorporation

of the LM scores as early as possible. For this

purpose, in each search state, we introduce a new
pruning criterion: instead of the usual score, we
always investigate its sum with the minimum of
the LM scores of all possible word continuations.

A practical implementation and experimental re-

sults are described in (Steinbiss et al., 1994). We

achieved reductions in search space by factors 3

to 5 with this method.
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7.6. Longer span language models with lattice
rescoring

7.6.1. Basic concept

During our first tests with forest search, we
* made informal experiments indicating that forest
search works not only with a bigram LM but also
with a trigram LM, with only moderate increase
of the active search space by an additional factor
of roughly 2. However, for the recognition with a
trigram LM, we decided to choose a different
approach with a search effort about the same as
for a bigram LM. In this two-step approach, a
word lattice is first generated with a bigram LM
and subsequently rescored with a trigram LM.
The approach is open to employ more complex
LMs in this-post processihg step.

7.6.2. Generation of the word lattice

A word lattice can be efficiently generated
with only minor modifications of our time-syn-
chronous beam search algorithm based on a tree
lexicon. It essentially amounts to collecting the
information about word-endings as they occur in
the course of the left to right decoding process.
This first pass simultaneously provides the best
bigram-scored sentence hypothesis, the lattice
overhead being virtually negligible in terms of
CPU time.

As opposed- to the word-graph generation
technique presented in (Oerder and Ney, 1993),
here we take full advantage of the bigram LM to
constrain the lattice, without requiring any fur-
ther optimization stage. More precisely, our anal-
ysis relies on the assumption that the position of
a word boundary depends only on the word pair
under consideration and not on further predeces-
sor words. This simplification has been success-
fully used by BBN in their word-dependent N-
Best algorithm (Schwartz and Austin, 1991) and
is also known as the “word-pair approximation”
(Ney, 1993a).

Therefore, in the present study the lattice is
defined as a time-structured list of word hypothe-
ses consisting of word identity, start and end
times, acoustic score and predecessor word iden-
tity. It has to be stressed that the collection of
word-ending information is done before the bi-
gram LM recombination takes place, to preserve

as much as possible different word sequences for
subsequent use with a higher-order LM.

The computational complexity of this first pass
is nearly identical to that of our bigram beam
search, the efficiency of which having been fur-
ther improved by the new handling of the LM
probabilities (see Section 7.5).

7.6.3. Trigram rescoring of the lattice

In this second pass, the trigram language model
is applied to the lattice at the phrase level. More
precisely, the acoustic probabilities of the word
hypotheses are combined with the trigram proba-
bilities taking account of the predecessor-word as
computed in the first pass. Searching for the
optimal rescoring still proceeds time-synchro-
nously and requires a Dynamic Programming (DP)
recursion taking account of all time and prede-
cessor constraints contained in the lattice (Ney,
1993a). The final output is the best trigram-scored
sentence hypothesis under the lattice restrictions.

The optimality of this procedure (in the Viterbi
sense) is preserved only under the following two
conditions: the word-pair approximation for the
position of a word boundary has to be valid and,
next, the beam used for generating the lattice
must be wide enough to keep enough phrase
hypotheses for subsequent trigram rescoring.

In practice, this algorithm appears to work
well with relatively modest lattice densities. The
computational costs are quite small since this
second pass does not require any further acoustic
scoring at the state level. This follows from the
word-pair assumption which implies that the word
boundaries have already been optimized in the
first pass.

Moreover, a careful list organization allows to
achieve great efficiency (without requiring the
cashing of the LM scores) to such an extent that
the trigram rescoring represents only a few per-
cent of the main bigram decoding CPU time.

8. Benchmarking our system on the Wall Street
Journal task

8.1. Why and when benchmarking?

To some extent, comparison between speech
recognizers is part of the scientific competition:
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the quality of our work is largely reflected in the
ability of the acoustic and language models to
- model reality — which is typically measured in
terms of word error rate, given fixed experimen-
tal conditions. Moreover, reproducible bench-
mark tests allow us to validate importance and
significance of improvements achieved by our col-
leagues and to check whether our system does
what it ought to.

The boundary condition for system develop-
ment differ somewhat from the development of a
dictation system for real use. There is a lot of
data available that well represents the task. As
the only optimization criterion is performance in
terms of error rate, we e.g. take a much finer
acoustic resolution, and memory demands and
processing time play a minor role here.

So far, we benchmarked our system on
— the TI digit string database (Haeb-Umbach et

al., 1993);

— the DARPA RM (resource management) task

(Ney, 1990; Aubert et al., 1993) and partici-

pated in the last official evaluation (Aubert et
al., 1993);

— the November ’92 and the November '93 evalu-
ations (official participation for November ’93)
of the Wall Street Journal task (Aubert et al.,
1994). ‘

The latter is described in the subsequent section.
The ARPA WSIJ corpus (Paul and Baker, 1992)

consists (among others) of samples of read texts

drawn from the Wall Street Journal publications
and provides training and test material for SI
continuous speech recognition in American En-
glish. Vocabulary sizes are typically ranging from
5K (closed) to 20K (open, i.e. there are out-of-
vocabulary (OOV) words being uttered in the test

sentences). In addition, standard bigram and tri-
gram language models have been supplied by D.
Paul from MIT Lincoln Lab.

8.2. System development

We first present some intermediate results il-
lustrating the main development stages of our
“WSJ systems”. Unless specified, all (non-
stressed) pronunciations were taken from the
original Dragon lexicon, training was performed
on the 84-speaker corpus, and recognition was
done with a bigram LM. Experiments have been -
run on several WSJO development sets with non-
verbalized punctuation and for various vocabular-
ies (5K closed, 20K open and closed).

The first step shows the reduction of the error
rate when using phone models that capture grad-
ually more contextual dependencies.

Qur interest for left-diphones stemmed from
the fact that they preserve the lexical tree struc-
ture of monophone transcriptions as opposed to
triphones. However triphones clearly lead to more
accurate models. Therefore, next stages have been
running with the set of 736 triphones occurring
more than 150 times in the WSJO training script.

The second step concerns the effect of linear
discriminant analysis (LDA) and of gender-de-
pendent (GD) estimation that has been used both
for the LDA transform and for the mixture pa-
rameters as well (Aubert et al., 1993). Our experi-
ments are summarized in Table 9.

The best configuration is achieved with a sin-

. gle gender independent (GI) LDA transform fol-

lowed by GD mixture estimation. Adding the
uni-sex models to the male- and female-specific
models only brings a further marginal improve-
ment.

Table 8
Influence of contextual units (Dev-5K)
No. of units Type No. of densities Error rate Progress
43 Monophones 33K 18.5% +0% (Ref.)
772 Left-diphones 37K 15.2% - 18%
772 Left-diphones 115K 14.0% . —-24%
736 Triphones 73K 13.1% —-30%

Word-error rate = del + ins + sub.
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The third step involves the LM rescoring tech-

nique in word lattices generated with a bigram
LM and shows the error reduction when going
from bigram to trigram.
_ When switching from bigram to trigram, both
the test-set perplexity and the error rate are
significantly reduced. It is interesting to observe
that — at least for our closed-vocabulary experi-
ments — the error rate decreases like the square
root of the bigram-to-trigram perplexity ratio.
Note however that this is nothing but a rule of
thumb deduced from limited experimental data.
For open vocabulary, the interpretation is compli-
cated by the presence of out-of-vocabulary words
that constitute about 2% of the test words and
give rise to additional insertion errors. Moreover,
in this case the perplexity measures are no longer
that reliable.

Last, we give a few figures concerning some
characteristic properties of the bigram search cost:
— When using triphones, the number of arcs in

the first two generations of the tree lexicon are

multiplied by respectively 6 and 2 with respect
to the monophone tree. However, due to the
improved precision of the triphone models, the

V. Steinbiss et al. / Speech Communication 17 (1995) 19-38

average number of state hypotheses in the
beam search is actually smaller!

— The improved LM-based pruning reduces the

average number of hypotheses by a factor of 3
to 5 compared to the original handling of bi-
gram scores.

_ When the vocabulary grows from 5K to 20K
words, the average number of hypotheses in-
creases by not more than 50% due to the
lexical tree.

Fig. 4 summarizes the development steps up to

this stage.

8.3. Description of the evaluation system

Two systems have been set-up differing mainly
in the number of triphones and the amount of
training data. In each case, the mixture density
parameters have been estimated gender-depen-
dently with respectively male, female and uni-sex
models. During decoding, the word sequence
achieving the highest cumulated probability has
been taken for the recognized sentence. Table 11
contains the main system characteristics.

Table 9

LDA and mixture gender dependent (GD) estimation (Dev-5K)

LDA? Gender (LDA) No. of densities Gender (Dens.) WER% Progress

No — 2x65 K M/F 12.4 +0% (Ref.)
Yes M/F 2%65K M/F 113 -9%

No —_ 1*133K GI 124 +0%

Yes Gl 1+139K GI 10.6 -15%

Yes GI 2x123 K M/F 9.7 —-22%

Yes - GI "+ 139K M/F/all 9.4 —24%

Gi = gender-independent, over male (M) and female (F) speakers.

Table 10
From bigram to trigram langnage model

Corpus (mode) Bigram Trigram Relative reduction
WER % Perp. WER % Perp.

Dev 5K closed * 10.6 110 7.9 62 —25%

Dev 5K closed ° 9.7 110 73 62 —24%

Dev 20K Closed ? 18.8 242 151 155 -20%

Dev 20K open 2 19.9 205 16.4 136 —-16%

WER = word-error rate (del + ins'+ sub).

2 and ® refer respectively to GI and GD (M/ F) mixture modeling

both after GI LDA (cf. Table 9).
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Table 11
Our two evaluation systems

Name Training data Training time Lexicon No. of monophones +
No. of triphones
SI-84 WSJ0 ca.15h LIMSI 45 + 740 tri
" SI-284 WSJO0 + 1 ca.80h Dragon 43 + 1864 tri

We used two lexica, which were provided by
LIMSI and Dragon Systems, respectively. As in-
dicated, the LIMSI lexicon has been used in the
first system (trained over 84 speakers) while the
Dragon lexicon has been used in the second one.
LDA has been applied gender-independently
based on 84 speakers (WSJO training data). The
average number of Laplacian densities per state
is about 45. The official bigram and trigram LM
have been employed without any modification.
These systems have been tested on the evaluation
sets of November 92 and November 93 contain-
ing recordings from respectively 8 and 10 new
out-of-training speakers.

8.4. Closed 5K lexicon

The two systems have been running on each

5K evaluation set with standard benchmark con-
ditions, i.e. not using any side information about
the utterances. Results for bigram and trigram
LM are summarized in Table 12.

Concerning the LM influence, the error rates
are approximately reduced like the square root of

18,5%

20,0%
18,0%
16,0%
14,0%
12,0%
10,0%
8,0%
6,0%}
4,0%
2,0%

13,1%

the perplexity ratio when going from bigram to
trigram. This represents a recovery of 30% of the
errors.

A clear improvement follows when more
acoustic models are estimated using more train-
ing data. With respect to system SI-84, SI-284
achieves an improvement of about 20% on
November 92 and 30% on November ’93. This is
attributed to the acoustically more difficult
recordings of last evaluation data as might be
inferred when considering the perplexities and
the error rates of both sets.

8.5. Open 20K lexicon

Here we present the 20K results obtained with
the second system SI-284 trained on 284 speak-
ers.

When going from bigram to trigram, the 20K
errors are now reduced by about 15%, i.e. some-
what less than could have been expected from the
“square root of perplexity ratio” rule of thumb.
However, the presence of about 2% of out-of-
vocabulary words makes the analysis somewhat

)
10,6% 97%

0,09 & :
43 Mono-

phones Diphones

772 Left- 736
Triphones

+LDA + M/F
Mixtures

+ Trigram

Fig. 4. Development steps from the baseline system with 43 monophones, no LDA, gender independent mixtures and bigram LM
(perplexity 110) to the trigram (perplexity 62) system with LDA, triphones and gender dependent mixtures.
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Table 12
Word-error rates on the 5K evaluation set

System . November ’92 November 93
Bigram (P = 111) Trigram (P = 57) Bigram (P = 106) Trigram (P = 62)
. SI-84 0.7/0.1) 7.4 0.4/0.7) 5.0 (3.2/1.0)12.7 2.5/1.0)9.4
S1-284 (0.5/0.8) 6.1 0.4/0.5) 4.3 (2.8/0.8)9.2 (1.8/0.6) 6.5

difficult as they give rise to additional insertion
errors having some “cascade” effect on the tri-
gram scores.

To conclude with these SK-20K experiments,
it might be observed that when using five times
more acoustic training data together with a tri-
gram LM, the overall gain in accuracy is close to
50% with respect to our baseline SI-84 bigram
results, i.e. about one word error over two is
recovered.

8.6. Extension to 45K lexicon

As mentioned in the preceding section, the
test data used for the 20K evaluation contains
out-of-vocabulary (OOV) words as it was actually
collected from newspaper texts spanning a much
larger vocabulary of 64K. The 20K lexicon was
simply made of the 20K most frequent words
measured over the LM training data consisting of
about 39 million words. Hence, the WSJ corpus
offers the possibility of studying the impact of
vocabulary coverage on the recognition accuracy,
an important aspect for any real-life dictation
application.

In our experiments, we observe that a spoken
word not in the lexicon causes typically more than
one error (about 1.6 on average) due to the
influence of neighbor words and the tendency of
fragmenting a long unknown word into smaller
ones. Thus there is an obvious interest for work-

Table 13
Evaluation results for 20K open lexicon

20K November 92 WER % 20K November 93 WER %
Bi(P=205) Tri(P=139) Bi(P=221) Tri(P=143)
1.1/24)140 (1.0/2.D11.9 (28/1.717.3 (5/13)149

WER given as (del/ins) tot = del+ins + sub.
P = Test-set perplexity for bigram and trigram.

ing with a drastically enlarged vocabulary. Table
14 gives the percentage of OOV words as a
function of the vocabulary size for the two test-
sets considered in the previous section.

By selecting the 45K most frequent words in-
stead of 20K, the OOV rate decreases by about
1.5% which could potentially lead to an absolute
error reduction of 2.5%.

However, for running this experiment a num-
ber of preliminary steps have to be fulfilled. First,
the lexicon has to be extended with the phonetic
transcriptions of the 25K added words and sec-
ond, a new trigram language model has to be set
up for this enlarged vocabuiary (all our WSJ tests
were made so far with the official 5K and 20K
language models provided by MIT Lincoln Lab).

The first problem has been solved by using a
Grapheme-to-Phoneme conversion system (Bes-
ling, 1994) which automatically generated all
missing transcriptions in the Dragon 20K lexicon.
For the estimation of a 45K trigram LM, the
training data consisted of normalized texts taken
from the Wall Street Journal publications in the
period 1987-1989, providing a total of 38.9 mil-
lion words covered by a 173K vocabulary (Paul
and Baker, 1992). This led to a LM with 4.2
million bigrams and 15.8 million trigrams.

Table 15 gives the test-set perplexities ob-
tained respectively with the official 20K and the
‘home-made’ 45K language models. For these
figures, the OOV words appearing in the test
sentences have been mapped to a single class of

Table 14

Frequency of OOV words versus vocabulary size
Test set 20K 45K 65K
November 92 1.9% 0.34% 0.0%
November '93 1.7% 0.35% 0.1%
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Table 15 Table 16
Test-set perplexities versus vocabulary size Trigram recognition results versus vocabulary size
Test set 20K 45K Test set 20K 45K Difference
' Bigram/trigram __ Bigram,/trigram November 92 OOV 19% 034% —1.56%
November ’92 205/139 219/146 WER 11.9% 98% —2.1% (18% rel.)
November "93 221/143 233 /146 November 93 OOV  1.7% 035% —135%
WER 14.8% 133% —1.5% (10% rel.)

words grouping all unknown words met in the
LM training corpus. So, due to the treatment of
the OOV words, these perplexity measures are
only lower bounds. When the vocabulary is en-
larged, unfrequent words that were OOV are
now included and tend to be of low probability,
which explains the increase of perplexity when
going from 20K to 45K.

Recognition has been performed with gender-
dependent (male /female) acoustic models of 1864
triphones estimated from 284 training speakers
and the two-step decoding strategy has been ap-
plied: first a word lattice has been generated
using the bigram tree search algorithm and next
the lattice was searched for the best sentence
using the trigram LM. The recognition results are
summarized in Table 16.

The improvement is particularly striking in the
first test-set where most of the errors due to
‘O0V’ words could be recovered while the gain is
still appreciable for the acoustically more difficult
recordings of the second test-set. In both cases, a
significant decrease of the Word-Error Rate
(WER) is achieved just by giving the recognizer a
larger number of possible word candidates.

Concerning the search effort, the overall de-
coding cost is increased by not more than 15%
when going from 20K to 45K. This follows from
the tree-organization of the lexicon as illustrated
in Table 17.

Although the total number of arcs in the tree
increases in the same proportion as the vocabu-

Table 17

lary size, the numbers of arcs in the first two
generations (G1 and G2) exhibit a much smaller
increase and these arcs are precisely responsible
for most of the search effort when using a time-
synchronous beam-pruning strategy. Hence, the
highly valuable property that the decoding cost

- increases much slower than the actual vocabulary

size.

9. A PC based continuous-speech recognition sys- .
tem for dictation

Real-world dictation, which is typically con-
nected with large and open vocabulary, is a diffi-
cult task that pushes today’s technology to its
limits. Despite the considerable progress made in
recent years, even for co-operative speakers and
restricted domains like free-text medical report-
ing, error-free speech recognition so far cannot
be achieved.

Up to now, large-vocabulary systems for dicta-
tion have required isolated word input. While this
reduces both the word-error rate and computa-

. tional costs as compared to continuous-speech

input, it burdens the user with an unnatural
speaking style. In addition, dictating with pauses
between words takes more time.

For people who professionally generate large
amounts of texts, e.g. physicians and lawyers, text
generation is characterized by a two-step process:

Number of arcs in tree lexicon (G; = number of arcs in generation i)

Voc. Total no. of arcs G1 G2 G3 G4 No. of homophones
20K 55728 350 1530 6586 10655 932/19980 = 4.7%
45K 124783 355 1904 10439 21523 3632,/44979 = 8.1%
Ratio: 2.25 2.24 1.01 1.24 1.59 2.02 39
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- Fig. 5. System architecture of the PC based continuous-speech
recognition system for dictation.

the phase of dictation, where speech is recorded -

either digitally or on tape, and a subsequent
separate transcription phase where secretaries
transcribe the dictations. (We ignore the proof-
reading in this discussion.)

The system developed at Philips Dictation Sys-
tems, Vienna, and described here adopts this
non-interactive approach and thus allows the per-
son to dictate with a natural speaking style and
without an undesired distraction by the need of
controlling a PC screen. After the speech is pro-
cessed by the speech recognizer, the secretary has
only to correct the recognition errors, which is
both faster and a more interesting job to do.

This three-step approach naturally results in
the system architecture as summarized in Fig. 5.
~ The dictation is recorded using a microphone;

the usual record/replay /fast-forward /rewind

functionality is available. So, no change of work
methodology is required. Punctuation should
be verbalized. The recorded speech is stored
on a fileserver in a PC network.

- Speech recognition runs remotely on a PC
which is connected to the network. (A typical

configuration currently used has a 486 proces-

sor and a 66 MHz clock rate.) An acoustic
front-end performs the acoustic analysis.
Recognition is made faster by a dedicated co-
processor board containing application-specific
ICs. Depending on the speaker and the spe-
cific boundary conditions, recognition with a
10K-20K-word vocabulary runs in 1-3 times
real-time.

- In contrast to typing the whole text, the secre-
tary only corrects the errors that occurred in
the recognition process. With a special
speech-synchronous editor that uses the link
between the recording and the text as given by
the hypothesized word boundaries, it is possi-
ble to listen to parts of the recording while
moving through the text.

Three measures have been taken to achieve the

lowest possible error-rates without hindering the -

person who dictates:

— The system has been set-up in speaker-depen-
dent mode such that each of the speakers gets
optimal performance.

— Training starts with reading a specified text
and is continued with the dictations that are
being produced anyway, together with their
proper transcriptions. After several hours of
dictations, the system reaches optimal perfor-
mance.

- A high-quality acoustic analysis together with a
large number of mixture components guaran-
tee a high acoustic resolution.

The first release of this system is a German

version. Field trials are being carried out in sev-

eral hospitals in Austria and Germany. The sys-
tem was first shown to the public on the ECR

(European Congress of Radiology) in Vienna in

September 1993; an American English prototype

version was presented on the RSNA (Radiologi-

cal Society of North America) conference in

Chicago in December 1993.
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