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ABSTRACT

// We report on recent developments of the Philips large vo-
cabulary speech recognition system and on our experiments
with the Wall Street Journal (WSJ) corpus. A two-pass
decoding has been devised that allows an easy integration
of more complex language models. First, a word lattice
is produced using a time synchronous beam search with
a bigram langnage model. Next, a higher-order language
model is applied to the lattice at the phrase level. The con-
ditions insuring the validity of this approach are explained
and practical results for trigram demonstrate its usefulness.
The main system development stages on WSJ data are pre-
sented and our final recognizers are evaluated on Nov’92
and Nov’93 test-data for both 5K and 20K vocabularies.

1. INTRODUCTION

In this paper, we report on recent developments of the
Philips large-vocabulary continuous-speech recognition sys-
tem that have been triggered off by working on Wall Street
Journal (WSJ) data.

The Philips dictation system for phoneme-based large-
vocabulary continuous-speech recognition relies on an in-
tegrated statistical framework and was recently described
in details {1). It has been successfully applied to speaker-
dependent (SD) dictation tasks in German with 10K to
20K words. Last year, a closely related version of this
system has been thoroughly evaluated on the 1000-word
DARPA RM task [2}, for speaker-independent (SI) Ameri-
can English. Characteristic features of our approach include
continuous mixture densities, linear discriminant analysis,
Viterbi-training, one pronunciation per word and within-
word triphones.

The ARPA WSJ corpus [3] consists (a.0.) of samples of
read texts drawn from the Wall Street Journal publications
and provides training and test material for SI continuous
speech recognition in American English. Vocabulary sizes
are typically ranging from 5K (closed) to 20K (open, i.e. out
of lexicon words do appear in the test sentences). In addi-
tion, standard bigram and trigram language models have
been supplied by D. Paul from MIT Lincoln Lab.

The paper is organized as follows. After a brief presenta-
tion of the acoustic-phonetic modeling in section 2, we focus
on the decoding procedure. The search has been extended
to fulfill the WSJ-task requirements that appear drastically
increased with respect to RM. A two-pass decoding strat-

egy has been devised. In the first pass, a word lattice is
produced using a time synchronous beam search with a
tree-organized lexicon and a bigram language model. This
step simultaneously provides the best bigram-scored sen-
tence hypothesis. In the second pass, the trigram language
model is applied to the lattice at the phrase level for ex-
tracting the best trigram-scored sentence hypothesis. This
new search strategy is explained in section 3 and the condi-
tions insuring the validity of this approach are also clarified.
Besides, the efficiency of the beam search has been greatly
improved by distributing the language model scores across
the lexical tree, using both unigram and bigram probabil-
ities as shown in section 3.4. In the last two sections, we
present a broad sample of results obtained on the WSJ task.
First, the main development stages are explained on a step-
by-step manner and next, our final systems are evaluated
on the Nov’92 and Nov’93 test-data for both 5K and 20K
vocabularies. In particular, the influence of the training size
and of the language models on the error rate is discussed.

2. ACOUSTIC-PHONETIC MODELING

Our standard acoustic analysis [1] is applied at a 10 ms
frame-rate. The log-spectrum energies are normalized for
each sentence by spectral mean subtraction. Linear dis-
criminant analysis is performed at the HMM state level
[4] from automatically segmented training data, the output
vector being reduced to its 35 “first” components. Mix-
tures of continuous Laplacian densities are estimated state-

‘specifically with a pooled absolute deviation vector using

Viterbi approximation and data-driven splitting [2]. One
single pronunciation is taken for each vocabulary word and
contextual dependencies are captured with word-internal
triphones only. These were selected based on their occur-.
rence frequency in the training script. Neither multiple pro-
nunciations nor across-word models have been considered.

3. SEARCH STRATEGY

3.1. Bigram Decoding with Tree Lexicon

Time-synchronous beam search has been successfully used
for several years at Philips [5] to handle 106,000 and more
vocabulary words. A significant reduction of the computa-
tional effort has been achieved by structuring the pronun-
ciation lexicon into a tree, the active search space being
dynamically constructed with a list organization [6].

Still, resorting to a tree-organized lexicon has some
rather contrasting effects for time-synchronous breadth-first

I1-129

0-7803-1775-0/94 $3.00 © 1994 IEEE



strategies. On one hand, it is observed that the bulk of the
decoding effort occurs in the first two phonemes of each
word and this explains the highly beneficial impact of shar-
ing the initial phoneme sequences that are common across
all lexical entries. On the other hand, as the word identities
are only known at the tree leaves, it is no longer possible
to perform an early language model (LM) recombination
[9], and even for a bigram LM, separate tree copies have
to be held depending on the predecessor word. Accord-
ingly, the inclusion of the bigram probabilities has to be
postponed until the word-end which prevents from taking
full advantage of the LM predictive properties to promptly
prune unpromising word candidates (see 3.4. for an efficient
remedy).

In spite of this adverse side-effect, the lexical tree or-
ganization has proven to be very advantageous in prac-
tice for large vocabulary tasks. A detailed discussion
with experiments is given in [6]. So far however, this
algorithm was used with a bigram LM and only ap-
plied to speaker-dependent recognition based on context-
independent phoneme models, the latter being particularly
beneficial to the tree compression effect.

Hence, two questions arose when tackling WSJ data:
first, how could the trigram language model be best inte-
grated into the decoding process and second, how would the
search cost increase when the lexical tree is made of context-
dependent subword units like triphones (a must for accurate
SI recognition) ? As explained in the following sections, our
solution consists of a two-pass decoding, the interface being
an acoustically-scored word lattice. This choice offers the
advantage that a complex language model can be exploited
in a post-processing step without increasing the complexity
of the acoustic search.

3.2. Generation of Word Lattice

A word lattice can be efficiently generated with only minor
modifications of our time-synchronous beam search algo-
rithm based on a tree lexicon. It essentially amounts to
collecting the information about word-endings as they oc-
cur in the course of the left to right decoding process. This
first pass simultaneously provides the best bigram-scored
sentence hypothesis, the lattice overhead being virtually
negligible in terms of CPU time.

As opposed to the word-graph generation technique pre-
sented in [7], here we take full advantage of the bigram LM
"to constrain the lattice, without requiring any further op-
timization or pruning stage. More precisely, our analysis
relies on the assumption that the position of a word bound-
ary depends only on the word pair under consideration and
not on further predecessor words. This simplification has
been successfully used by BBN in their Word-Dependent
N-Best algorithm [8] and is also known as the “word-pair
approximation” [9]. .

Therefore, in the present study the lattice is defined as a
time-structured list of word hypotheses consisting of word
identity, start- and end-time, acoustic score and predeces-
sor word identity. It has to be stressed that the collection
of word-ending information is done before the bigram LM
recombination takes place, to preserve as much as possible
different word sequences for subsequent use with a higher-
order LM.

The computational complexity of this first pass is nearly
identical to that of our bigram beam search, the efficiency
of which having been further improved by a new handling
of the LM probabilities. ' .

Concerning the use of context-dependent models in this
acoustic pass, it appears that the influence of triphones on
the lexical tree structure is largely compensated by a more
focused search consecutive to more detailed phone models
(cf. section 4).

3.3. Trigram Rescoring in Lattice

In this second pass, the trigram language model is applied
to the lattice at the phrase level. More precisely, the acous-
tic probabilities of the word hypotheses are combined with
the trigram probabilities taking account of the predecessor-
word as computed in the first pass. Searching for the opti-
mal rescoring still proceeds time-synchronously and requires
a Dynamic Programming (DP) recursion taking account of
all time and predecessor constraints contained in the lattice
[9]. The final output is the best trigram-scored sentence
hypothesis under the lattice restrictions.

The optimality of this procedure (in the Viterbi sense)
is preserved only under the following two conditions: the
word-pair approximation for the position of a word bound-
ary has to be valid and next, the beam used for generating
the lattice must be wide enough to keep enough phrase hy-
potheses for subsequent trigram rescoring.

In practice, this algorithm appears to work well with rel-
atively modest lattice densities as shown by the results in-
cluded in sections 4 and 5. The computational costs are
quite small since this second pass does not require any fur-
ther acoustic scoring at the state level. This follows from the
word-pair assumption which implies that the word bound-
aries have already been optimized in the first pass. More-
over, a careful list organization allows to achieve great effi-
ciency (without requiring the cashing of the LM scores) to
such an extent that the trigram rescoring represents only a
few percent of the main bigram decoding CPU time.

3.4. Imp}oved LM-based Beam Pruning

As explained in 3.1, the tree lexicon delays the application
of the language model by one word as compared to the sit-
uation of a linear lexicon. Word identities are only known
at the tree leaves so that the true bigram probabilities can
only be incorporated at word-endings. On the other hand,
when the word identity is known from its first model state,
the LM scores can be immediately added leading to a more
focused search space. Indeed, significantly more partial hy-
potheses can be safely eliminated from the beam and the
search costs are reduced in proportion.

To alleviate the delaying effect of the tree lexicon, the
following solution has been conceived [10]. The general idea
is to use at each tree node some conservative estimate of the
LM score relevant to all possible word continuations and to
perform this “smearing” process on an incremental manner
from the tree root to the leaves.

The application of this principle is complicated by the ex-
istence of tree copies that depend on the predecessor word
and are essential for the DP optimality. Therefore, only
the unigram LM information has been incrementally dis-
tributed across the lexical tree, i.e. the prior probabilities
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of each word, these values being always available as part
of an N-gram LM. This operation can be easily done in a
pre-processing step the details of which are given in {10]
and leads to a negligible overhead during search. Last, a
correction step is necessary when reaching the word-ends:
the cumulated partial unigram scores have to be withdrawn
while the true bigram log-probabilities are added. Although
based on the unigram LM part only, this scheme appears
to be remarquably efficient by strongly reducing the active
number of hypotheses and moreover, by allowing the use of
a smaller beam width.

4. SYSTEM DEVELOPMENT

We now present some intermediate results illustrating the
main development stages of our “WSJ systems”. Unless

specified, all (non-stressed) pronunciations were taken from -

the original Dragon lexicon, training was performed on the
84-speaker corpus, and recognition was done with a bigram
LM. Experiments have been run on several WSJ0 develop-
ment sets with non-verbalized punctuation and for various
vocabularies (5K closed, 20K open and closed).

The first step shows the reduction of the error rate when
using phone models that capture gradually more contextual
dependencies.

Table 1. Influence of Contextual Units (Dev-5K)
WER=Word Error Rate (Del+Ins+Sub)

#Unmts|  Type [#Densit. [WER % [Progress |

43 Monophones | 33 K - | 18.5 Ref.
772  |Left-Diphones | 37 K 15.2 -18 %
» ” 115 K 14.0 -24 %
736 Triphones 73 K 13.1 -30 %

Our interest for left-diphones stemmed from the fact
that they preserve the lexical tree structure of monophone
transcriptions as opposed to triphones. However triphones
clearly lead to more accurate models. Therefore, next stages
have been running with the set of 736 triphones occurring
more than 150 times in the WSJO training script.

The second step concerns the effect of Linear Discrimi-
nant Analysis (LDA) and of Gender-Dependent (GD) esti-
mation that has been used both for the LDA transform and
for the mixture parameters as well [2]. Our experiments are
summarized in the following table.

Table 2. LDA and Mixture GD Estimation (Dev-5K)
GI=Gender-Independent, over M & F Speakers

[[LDA7 Gender [[#Densit. _ Gender [WER % [[Progress |

NO - 2x65 K M/F 12.4 Ref.
YES M/F [[2+65K M/F 11.3 -9%
NO - 1x133 K GI 12.4 Ref.
YES GI 1+139 K GI 10.6 -15%
YES GI [l2#123 K M/F 9.7 -22%
YES GI P+139K M/F/A|l 9.4 -24%

The best configuration is achieved with a single GI LDA
transform followed by GD mixture estimation. Adding the

uni-sex models to the male- and female-specific models only
brings a further marginal improvement.

The next table shows that slightly but consistently better
results are achieved with the LIMSI lexicon by comparison
with the Dragon lexicon.

Table 3. LIMSI versus DRAGON Lexicon (Dev-5K)
Gender-Dep. : GD2=M/F, GD3=M/F/All
[ Lexicon [[GI WER JGD2 WER [GD3 WER |

Dragon || 10.6% 9.7% 9.4%
LIMSI 9.9% 9.4% 9.0%

The third step involves the LM rescoring technique in
word lattices generated with a bigram LM and shows the
error reduction when going from bigram to trigram.

Table 4. From Bigram to Trigram Language Model
WER=Word Error Rate (Del-+Ins+Sub)

BIGRAM TRIGRAM || Relat.
WER % Perp. |WER % Perp. [[Reduct

Dev 5K Closed’ 10.6 110 7.9 62 -25%
Dev 5K Closed? 9.7 110 7.3 62 | -24%
Dev20K Closed” || 18.8 242 15.1 155 || -20%
Dev20K Open'! 19.9 205 16.4 136 || -16%

Corpus (Mode)

1 and 2 refer resp. to GI and GD (M/F) mixture modeling
both after GI LDA (cf. Table 2).

When switching from bigram to trigram, both the test-
set perplexity and the error rate are significantly reduced.
It is interesting to observe that the error rate decreases like
the square root of the bigram-to-trigram perplexity ratio, at
least for our closed-vocabulary experiments. Note however
that this is nothing but a rule of thumb deduced from lim-
ited experimental data. For open vocabulary, the interpre-
tation is complicated by the presence of out-of-vocabulary
words that constitute about 2% ot the test words and give
rise to additional insertion errors. Moreover, in this case
the perplexity measures are no longer that reliable.

Last, we give a few figures concerning some characteristic

properties of the bigram search cost:

o When using triphones, the number of arcs in the first
two generations of the tree lexicon are multiplied by
resp. 6 and 2 with respect to the monophone tree:
However, due to the improved precision of the triphone
models, the average number of state hypotheses in the
beam search is actually smaller !

e The improved LM-based pruning reduces the average
number of hypotheses by a factor of 3 to 5 compared
to the original handling of bigram scores.

o When the vocabulary grows from 5K to 20K words, the
average number of hypotheses increases by not more
than 50% owing to the lexical tree.

5. EVALUATION RESULTS

5.1. - System Description

Two systems have been set-up differing mainly in the num-
ber of triphones and the amount of training data. In each
case, the mixture density parameters have been estimated
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gender-dependently with respectively male, female and uni-
sex models. During decoding, the word sequence achieving
the highest cumulated probability has been taken for the
recognized sentence. The table below gives the main sys-
tem characteristics.

Table 5. Main Characteristics of Evaluation Systems

[NAME JITRN-data [TRN-time |[Lexicon [ Mono+#Tripho]
Si-84 WSJ0 |=~15 hours | LIMSI 45 + 740 Trni
SI-284 || WSJ0+1 =80 hours {Dragon | 43 + 1864 Tn

As indicated, the LIMSI lexicon has been used in the
first system (trained over 84 speakers) while the Dragon
lexicon has been used in the second one. LDA has been
applied gender-independently based on 84 speakers (WSJ0
TRN-data). The average number of Laplacian densities
per state is about 45. The official bigram and trigram LM
have been employed without any modification. These sys-
tems have been tested on the evaluation sets of Nov’92 and
Nov’93 containing recordings from resp. 8 and 10 new out-
of-training speakers.

5.2. Closed 5K Lexicon

The two systems have been running on each 5K evaluation
set with standard benchmark conditions, i.e. not using any
side information about the utterances. Results for bigram
and trigram LM are summarized in the following table.

Table 6. Evaluation Results for 5K Closed Lexicon
P = Test Perplexity for Bigram and Trigram
WER % given as: (Del/Ins) Tot=Del+Ins+Sub

SYS [ 5SK NOV'92WER % || 5K NOV'93 WER %

Bi (P=111) [Tri (P=57) || Bi (P=106) |[Tri (P=62)
[Si-84 [[(-7/1.) 7.4 [(.4/.7) 5.0 [[(3.2/1.) 12.7[(2.5/1.) 9.4
S1-284 | (.5/.8) 6.1 |(.4/.5) 4.3 || (2.8/.8) 9.2 [(1.8/.6) 6.5

Concerning the LM influence, it might again be observed
that the error rates are approximately reduced like the
square root of the perplexity ratio when going from bigram
to trigram. This represents a recovery of 30% of the errors.

A clear improvement follows when more acoustic models
are estimated using more training data. With respect to
system SI-84, SI-284 achieves an improvement of about 20%
on NOV’92 and 30% on NOV’93. This is attributed to the
acoustically more difficult recordings of last evaluation data
as might be inferred when considering the perplexities and
the error rates of both sets.

5.3. Open 20K Lexicon
Here we present the 20K results obtained with the second
system SI-284 trained on 284 speakers.

Table 7. Evaluation Results for 20K Open Lexicon
P=Test Perplexity for Bigram and Trigram
WER given as: (Del/Ins) Tot=Del+Ins+Sub

20K NOV’92 WER % 20K NOV'93 WER %
Bi (P=205) [Tn (P=139) | Bi (P=221) | Iri (P=143)
[(1/2.4) 14. [1./2.1) 11.9](2.8/1.7) 17.3(2.5/1.3) 14.9]

When going from bigram to trigram, the 20K errors are
now reduced by about 15% i.e. somewhat less that could
have been expected from the “square root of perplexity ra-
tio” rule of thumb. However, the presence of about 2% of
out-of-vocabulary words makes the analysis somewhat dif-
ficult as they give rise to additional insertion errors having
some “cascade” eflect on the trigram scores.

6. CONCLUSION

In spite of a relative simplicity, our algorithms achieve per-
formances that are comparable to those obtained by most
advanced systems during the last WSJ Nov’93 evaluation.
We expect further progress by implementing multiple pro-
nunciations and across-word triphone models.
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