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ABSTRACT

This paper gives a status report of the Philips research system for
phoneme-based, large-vocabulary, continuous-speech recognition.
Like for many other systems, the recognition architecture is based
on an integrated statistical approach. We describe the characteris-
tic features of the system as opposed to other systems: 1. The
Viterbi criterion is consistently applied both in training and test-
ing. 2. Continuous mixture densities are used without tying or
smoothing. 3. Time-synchronous beam search in connection with a
phoneme look-ahead is applied to a tree-organized lexicon.

The system has been successfully applied to the American English
DARPA RM task. Here, we report experimental results for a
German 13 000-word Philips internal dictation task. In addition to
the scientific prototype, a PC version has been set up which is
described here for the first time.

Keywords: Continuous speech recognition, large vocabulary
recognition.

1. Introduction

For large-vocabulary, continuous-speech recognition, there are a
number of operational prototype systems in rescarch. Like these
systems and the IBM system for 20 000-word recognition of iso-
lated-word input, the prototype system described in this paper is
based on techniques of statistical pattern recognition and stochastic
modelling, where training data are heavily exploited and local de-
cisions are avoided as far as possible. See [12, 16] for references.

The characteristic features of the approach to be presented are:

o A large-sized acoustic vector capturing first and second-order
derivatives is used. There is no splitting into separate streams
as in most other systems that use tied-mixtures.

The Viterbi criterion is used both in training and recognition.
Continuous mixture densities are used in a way that amounts to
what can be called 'statistical template matching’.

Linear discriminant analysis improves the acoustic analysis.

For bigram language modelling, a non-linear interpolation has
been developed that gives consistently lower perplexities than
linear interpolation.

The concept of time-synchronous beam search has been ex-
tended towards a tree organization of the pronunciation lexicon
so that the search effort is significantly reduced. A phoneme
look-ahead technique resuits in an additional improvement. A
PC based implementation (cf. sect. 8) underlines the efficiency
of this search strategy.

The organization of the paper is as follows. We first summarize
the statistical approach to speech recognition and then describe the
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four main entities of our system: acoustic analysis, acoustic-
phonetic modelling, language modelling and search. A section
with experiments on our internal dictation task follows. The final
section describes a PC based implementation of our system.

2. System Architecture

Speech Input

Language Model
Search
(PrC¥, e, %) s )
. A i
i ()
Recognized Text

Fig. 1: System Architecture

Fig. 1 presents a block diagram of the system architecture. In the
preprocessing step of acoustic analysis, the speech signal is trans-
formed into a sequence of acoustic vectors X,,...xp (over time
t=1,...,T). As the speech signal, and thus this sequence of observa-
tions, is not exactly reproducible, a statistical approach is used to
model its generation. Statistical decision theory tells that in order
to minimize the probability of recognition errors, one should
decide for the word sequence W=w,,...,wy; (of unknown length N)
that maximizes [8]
Pr(w,...wy) Pr(x ... xplw ,...wy) . ¢))]

The first term, the a-priori probability of word sequences
Pr(w,,...,wy), is independent of the acoustic observations and is
completely specified by the language model. It reflects the
system's knowledge of how to concatenate words of the vocabulary
to form whole sentences and thus captures syntactic and semantic
restrictions.

The acoustic-phonetic modelling is reflected by the second term.
Pr(x,,....XlW,,...,wyy) is the conditional probability of observing
the acoustic vectors Xx,,....Xp when the words w,...wy were
uttered. These probabilities are estimated during the training phase
of the recognition system. A large-vocabulary system typically is
based on subword units like phonemes, which are concatenated
according to the pronunciation dictionary to form word models.

The decision on the spoken words must be taken by an
optimization procedure which combines information of the
language model and of the acoustic model, the latter being based
on the phoneme models and the pronunciation dictionary. The



optimization procedure is usually referred to as search in a state
space defined by the knowledge sources.

3. Acoustic Analysis

3.1 Spectral Analysis

The acoustic signal is low-pass-filtered and digitized with a
-sampling frequency of 16 kHz. The following steps are performed
for every frame, i.e. every 10 ms:

Application of a Hamming window to a 25-ms segment.
512-point FFT after padding with zero-valued samples.

Cepstral smoothing of the logarithmic FFT intensities using a
sin(x)/x kernel function.

In the range from 200 Hz to 6400 Hz, sampling at 30 frequency
points that roughly correspond to 2 Mel-frequency scale.

Normalization of the 30 spectral intensities with respect to their
mean value. Together with this "energy” value, they form the
31-dimensional acoustic vector y(t).

To account for varying recording conditions in the dictation task,
each acoustic vector is normalized with respect to the long-term
spectrum as obtained by averaging over a part of the sentence.

In order to capture the temporal structure of the speech signal,
each acoustic vector y(t) is then augmented by slope and curvature
information over the time axis. Thus, the original sequence of y(t)
of acoustic vectors is replaced by

¥(t)

(1)
y(1)-y(e-Ar) ,

x(t):=|y () |=
y"(6)] | y(e+Aan)-2y()+y(t-Ar)

where the first- and second-order differences were chosen to cover
the time intervals [t-At, t] and [t-Att+At], respectively. The time
delay At is typically 30 ms. The new sequence of acoustic vectors
Xy»...% in 2 higher-dimensional vector space serves as input to the
subsequent processing steps. For the first and second differences
of the 30 spectral intensities, pairs of adjacent spectral intensities
are averaged so that the final vector consists of 63 components: 30
spectral intensities, 15 first- and 15 second-order differences, and
3 components representing energy and its differences.

3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a well-known technique in
statistical pattern classification for improving the discrimination
between classes in a high-dimensional vector space ([3] pp. 114
ff.). The basic idea is to find a linear transformation such that a
suitable criterion of class separability is maximized. The
transformation is obtained as the eigenvector decomposition of the
product of two scatter or covariance matrices, the total-scatter
matrix and the inverse of the average within-class scatter matrix.
Recently, this technique has been successfully applied to speech
recognition, for both small [4, 7] and large-vocabulary tasks [6].

When applying LDA to speech recognition, the choice of the
proper classes to be discriminated is not obvious - are they whole
phonemes, phoneme states or the mixture components of a state?
Our experiments indicated that the states are a good choice. The
computation of the LDA transform is further complicated by the
time alignment problem. Therefore, we use a three-step training.
With our standard iterative training we obtain a segmentation of
the training data, which provides the class labels for the
subsequent estimation of the LDA transform. The third step is a
new iterative training using LDA-transformed acoustic vectors.

@
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Note that since a single class-independent transformation matrix is
employed, the matrix multiplication is done in the acoustic front
end once per frame rather than for each log-likelihood calculation.

4. Acoustic-Phonetic Modelling

The acoustic conditional probabilities Pr(x,,....xylw,,....wy) are
obtained by concatenating the corresponding word models, which
again are obtained by concatenating phoneme models according to
the pronunciation lexicon. We use inventories of 40-50 phoneme
symbols including symbols for silence and maybe glottal stop. As
in many other systems, these subword units are modelled by
stochastic finite-state automata, the so-called Hidden Markov
Models (HMMs) [2, 8, 11].

Fig. 2: Topology of phoneme HMM

For each state s of the HMM, there is an emission probability
density q(xls) of generating the vector x;. The phoneme unit
shown in Fig. 2 has a tripartite structure in order to take account of
left and right acoustic dependences. Each of the three parts
consists of two states with identical emission distributions. The
transition probabilities, which allow loop, jump and skip, are tied
over all states. Unlike most other HMM structures, this structure
has a simple durational model whose most likely duration of 60 ms
is close to the average phoneme duration.

No pronunciation variants are used in the pronunciation lexicon,
such that the emission distributions have to model deviations from
the standard pronunciation as well as coarticulatory effects. The
best results were obtained for continuous mixture densities

q(xJs)= Ec,,(s)bk(x,h) with 0< ¢, £1and Zc,(s): 1 (3)

where the so-called component densities by(.l.) are unimodal
densities such as Gaussians or (as in our system) Laplacians:

(el)=TI[ ) ord -5 02 g

n is the index of the vector components. Each density is
completely specified by its location vector r, ;. The vector of
absolute deviations, (vl,...,vN)‘, is assumed to be independent of
both the component densities and the states and thus serves as an
overall scaling for the acoustic vectors.

In contrast to other systems, the Viterbi criterion is used both in
training and recognition. This applies even to the level of mixture
components, such that the sum over the component densities in
eq. (3) is replaced by their maximum [12].

While we typically develop our system on a speaker-dependent
German task (cf. sect. 7), we also successfully benchmarked our
system on both the speaker-dependent and the speaker-independent
part of the well-known American English DARPA (Defense
Advanced Projects Agency) RM (resource management) task [1]
[12]. The major modifications of our system were the usage of
context-dependent phoneme models and a large number of
densities. In contrast to other systems, the system does not us¢
across-word models, and there is typically. no smoothing of
emission probabilities. :




5. Language Modelling

The language model provides, for each word sequence, an estimate
of the probabilities Pr(wy,..,w;) or, equivalently, of the
conditional probabilities Pr(wplwy,...,w;_1). m-gram models 9]
have established themselves as both a good way to reliably
estimate the parameters and to keep them limited so they can be
stored and retrieved. In view of the size of corpora available, we
typically use a word bigram model P(wj, | w,,_1) or a category-
based bigram model (bigram class model) with automatically
generated classes [10].

While maximum-likelihood estimation would suggest to take
relative frequencies of bigram counts, it is common knowledge
‘that these are particularly bad as estimates and that smoothing is

" important. The smoothing method that we use is different from

those used in other systems. The non-linear interpolation scheme
that we use essentially amounts to substracting a constant d from
the counts and distributing the gained probability mass on less
detailed distributions [13]. With this method, we achieve better
results than with backing-off or linear interpolation.

6. The Search Procedure

Time-synchronous beam search has successfully been used in the
Philips continuous-speech recognizer for several years [15]. We
found that it is efficient also for 10 000 or more words [14]. First,
all knowledge sources are available at the same level in the
integrated search. Second, all hypotheses refer to the same acous-
tic vector sequence in time-synchronous search. These two key
points allow a drastic reduction of the actual search space by
pruning less promising hypotheses.

6.1 Tree Lexicon

A straight-forward approach of constructing the search space is to

- synthetically build up word models from concatenating the

appropriate phoneme models as given by the pronunciation
lexicon. In this space, different copies of the same phoneme occur
due to the lexical constraints. For similar reasons, the language
model restrictions make it necessary to introduce several copies of
the same word, representing contexts that allow for different
continuations. This organization, where each state belongs to
exactly one word, will be called linear lexicon.

When the lexicon grows larger, e.g. from 1000 to 10 000 words, it
is more efficient to arrange the pronunciation lexicon as a tree of
phonemes (tree lexicon). The compression factor for the tree lexi-
con as compared to the linear lexicon is even surpassed by the re-
duction in the number of active states, because most of the active
states are located in the word beginnings (near the tree's root).

The tree organization of the lexicon also has an undesired
consequence for the organization of the search space. In contrast to
a linear lexicon, the word identities are unknown at the word
beginnings. Particularly for a bigram language model, this means
that separate tree copies have to be held, depending on the
predecessor word. While the potential search space is blown up by
a factor of the vocabulary size, e.g. 10 000, the actual search space
grows much more moderately, typically by only a factor of 2. The
tree organization is thus very beneficial for large-vocabulary tasks.
A detailed discussion with experiments is given in [14].

62 Phoneme Look-Ahead

The phoneme look-ahead additionally reduces the number of
active states by estimating whether a started phoneme will or will
not survive the next few time frames (in our system typically
60 ms). In a first step, the likelihood of each phoneme ahead of the

current time frame is estimated by carrying out a time-alignment.
Then, each time a state hypothesis crosses a phoneme boundary,
these figures are utilized for probability estimates for the best path
extensions both of this and of any other state, which in turn are
used to perform an additional pruning [S]. '

For the phoneme look-ahead, the original phoneme models are
used without any simplification. Note that, in particular for the
case of monophones, the number of generic states is much smaller
than the number of state hypotheses. The likelihood scores are
stored for later use in the detailed match. Like the conventional
search, the look-ahead is sped up by beam pruning; in addition,
there is no need for book-keeping as in the detailed match.  To
further reduce computation, the look-ahead is carried out only

. every other time frame. For the omitted time frame, the look-ahead

scores of the previous time frame are used.

7. Experimental Tests

We give a very brief look on experiments conducted in connection
with our speaker-dependent dictation task. Experiments on other,
public available databases that allow a comparison with other
systems, are described elsewhere [12, 16].

The data in these experiments are real-life ficld data from
professional text producers. Speakers M-60 and M-61 are lawyers,
M-72 and M-73 are radiologists. All speakers are male and work
in Vienna, Austria. The speakers were asked to dictate as usual;
this inciudes verbalized punctuation. The dictations were recorded
with hand-held microphones on desktop dictation equipment. We
processed exactly the same recordings that were also given to the
secretaries for transcription. Although the speakers are very
experienced with dictation, we found that recognition was harder
on this material than on read texts.

Speaker | Vocabu-| Test-set Active states Word-error rate in %
lary | perplexity | /centisecond | Del.  Ins. _ Total |
M-60 | 12073 113 8 700 3.1 1.0 | 10.2
M-61 | 15188 176 9 300 1.9 1.5 | 12.1
M-72 | 13095 267 11 600 2.4 19 | 112
M-73 | 13095 42 14 000 0.6 1.7 5.7

Table 1: Baseline system on 4 field test speakers. Bigram LM,
look-ahead, no LDA, 9 h training, 16 000 mixture components.

o mngmaterial | 07h | 12h | 20h [ 32h | 95h
4000 16.1% | 144% | 13.1% | 12.3% | 11.4%
8000 - 1 134% | 129% | 11.7% | 108%
16000 - - - | 116% | 101%
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Table 2: Error-rate as a function of training set size and number of
densities. Speaker M-60, vocabulary size 12073 words, test-set

perplexity 113.
Table 1 shows the performance

Speaker [ noLDA | LDA of our system with high acoustic
M-60 123 10.4 resolution (16000 mixture
components) and about 9 hours

M-61 15.0 12.3 of training material, but without

LDA. The test material
comprised 2000 - 3000 spoken
words. The number of active
states per centisecond before
pruning refers to the search effort. Table 2 shows how the error-

Table 3: Effect of LDA on the
word-error rate (in %). About 3
h training, 4 000 densities.



rate depends on the training-set size and the acoustic resolution.
Monophones were used her;, we expect improvements with
context-dependent phonemes. Table 3 shows the improvement by
LDA.

8. A PC Based Contmuous-Speech Recognition
System for Dictation

Real-world dictation, which is typically connected with large and
open vocabulary, is a difficult task that pushes today's technology
to its limits. Despite the considerable progress made in recent
years, even for co-operative speakers and restricted domains like
free-text medical reporting, error-free speech recognition so far
cannot be achieved.

Up to now, large-vocabulary systems for dictation have required
isolated word input. While this reduces both the word-error rate
and computational costs

. as compared to

( Dictation J continuous-speech input,
it burdens the user with

Recording an unnatural speaking

style. In  addition,

dictating with pauses
between words takes

( Speech Recognition )

more time.

Recording and Text For people who
professionally generate
large amounts of texts,

Speech-Synchr?nous J e.g. physicians and

Text Correction lawyers, text generation

is characterized by a

Document two-step process: The

phase of dictation,

where speech is

Fig. 3: System architecture of the PC ~ recorded either digitally
based continuous-speech recognition ~ Of on tape, and a
system for dictation. subsequent scparate
transcription phase

where secretaries transcribe the dictations. (We ignore the proof-

reading in this discussion.)

The system developed at Philips Dictation Systems, Vienna, and

described here adopts this non-interactive approach and thus

allows the person to dictate with a natural speaking style. After the
speech is processed by the speech recognizer, the secretary has

only to correct the recognition errors, which is both faster and a

more interesting job to do.

This three-step approach naturally results in the system

architecture as summarized in Fig. 3:

o The dictation is recorded using a microphone; the usual
record/replay/fast-forward/rewind functionality is available. So,
no change of work methodology is required. Punctuation should
be verbalised. The recorded speech is stored on a fileserver in a
PC network.

Speech recognition runs remotely on a PC which is connected

to the network. An acoustic front-end performs the acoustic .

analysis. Recognition is sped up by a dedicated co-processor
board containing application-specific ICs. Depending on the
speaker and the specific boundary conditions, recognition with
a 10 - 20 000-word vocabulary runs in 1 - 3 times real-time.

In contrast to typing the whole text, the secretary only corrects
the errors that occurred in the recognition process. With a
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special speech-synchronous editor that uses the link between
the recording and the text as given by the hypothesized word
boundaries, it is possible to listen to parts of the recording
while moving through the text.
Three measures have been taken to achieve the lowest possible
error-rates without hindering the person who dictates:

The system has been set-up in speaker-dependent mode such
that each of the speakers gets optimal performance.

Training is done with the dictations that are being produced
anyway, together with their proper transcriptions. After several
hours of dictations, the system reaches optimal performance.

A high-quality acoustic analysis together with a large number
of mixture components guarantee a high acoustic resolution.

The first release of this system is 2 German version. Field trials are
being carried out in several hospitals in Austria and Germany.
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