ON THE DYNAMIC ADAPTATION OF
STOCHASTIC LANGUAGE MODELS

 Reinhard Kneser, Volker Steinbiss

Philips GmbH Forschungslaboratorien, Aachen
P. O. Box 1980, 5100 Aachen, Germany

kneser@pfa.philips.de

ABSTRACT

This paper introduces a simple and general scheme for
the adaptation of stochastic language models to chang-
ing text styles. For each word in the running text, the
adapted model is a linear combination of specific mod-
els, the interpolation parameters being estimated on
the preceding text passage. Experiments on an En-
glish 1.1-million word corpus show the validity of the
approach. The adaptation method improves a bigram
language model by 10% in terms of test-set perplexity.

1. INTRODUCTION

The power of stochastic language modelling for large-
vocabulary speech recognition has been successfully
demonstrated in several systems. While stochastic lan-
guage models could principally model long-range de-
pendences, they are usually designed to model short-
range dependences only, as in the bigram or trigram
model cases, due to training and storage problems [1].
Once trained, the language model is usually kept fixed
during recognition. 4

A human listener, in contrast, conditions his expec-
tation of what will be said on a long-ranging history
of what has been said. We postulate that there are
properties like discourse domain (politics or art), style
(newspaper text or database queries), type of vocabu-
lary (general or technical) etc. that vary only slightly
within text passages but that can be very different for
different types of text. We propose to capture these
properties within several specific stochastic n-gram lan-
guage models. These specific models are linearly inter-
polated using adaptive interpolation parameters that
reflect the type of the preceding part of the text. The
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adaptive interpolation parameters are chosen to be the
maximum-likelihood estimates obtained from the text
passage preceding the word under consideration.

Only little has yet been published on language-model
adaptation. Kuhn and de Mori adapt a stochastic lan-
guage model using a cache method which raises the
probability of words observed in the preceding text
passage [2][3]. The adaptation of an n-gram language
model based on a minimum relative entropy criterion is
described in [4]. Hattori presented an approach similar
to ours for speaker adaptation [5].

2. ADAPTATION SCHEME

We start with K language models, each of them trained
beforehand on a different text category such as news-
paper text, scientific writing, etc. For simplicity of no-
tation let us assume bigram models (as in our exper-
iments). For the k-th bigram model, Pg(wp|wp—1) is
the conditional probability of observing word w,, after
word wy,—1. Each of the K specific models contributes
to the interpolated model via

P(wnlwa-1) = Y AePi(wnlwa-r) (1)

where A; can be interpreted as the probability that it
is language model k which produces the current word.

- Particularly, 0 < Ap <land )}, A = 1.

The basic idea now is to dynamically adapt the pa-
rameter vector A = (A1,...,Ag), which is used for the
prediction of each new word wy,, conditioned on the
previously observed L words. The model assumption is
that ) should maximize the likelihood of the preceding
words wp-r,...,Ws_1 . The maximum-likelihood esti-
mate is calculated with a few iterations of the forward-
backward algorithm [6].

As initial values for A at position n, we start at the
beginning of the text with equal probabilities and later
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Table 1: Test-set perplexities of adaptive models
compared to baseline models.

Without | With
Method Cache | Cache
(a)| Baseline model (cf. 3.1) 532.1 410.9
A fixed for each category,
(b) optimized on test set 487.6 387.7
Additionally  smoothed
(c)| specific models on their 505.9 399.0
text categories (cf. 3.3)
(d)| Adapted (cf. 3.2) 480.7 384.0
Adapted smoothed mod-
(e) els (cf. 3.3) 482.0 384.2
(f)| Hard Decision (cf. 3.4) 494.2 394.0

on with the estimate for position n — 1. The iteration
step from A to Ay is
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3. EXPERIMENTAL RESULTS

3.1 Corpus and Baseline Model

Experiments were performed on an English text corpus
comprising 1.1 million words, which consists of 15 dif-
ferent text categories like newspapers, scientific texts,
fiction, etc. We divided each of the text categories
into a training (3/4) and a test (1/4) portion and then
trained 15 specific word bigram language models on
the respective training portions. Each of these models
is interpolated with unigram and zerogram models, all
of them estimated on the respective portions. In the
same way an additional general model was trained on
all training portions as a whole. With a perplexity of
532.1, the latter serves as a baseline model (left column
of Table 1a).

We ran an experiment in order to get an idea of how
specific the K = 15+ 1 language models are. For each
text category we chose an optimal parameter vector
A(k) . The columns in Table 3 show the parameter vec-
tors A*¥) which differ very strongly among the different
text categories. For text category k, the k-th compo-
nent A has a high value. In almost all cases, the largest
value is given to the general model, which has been
trained with more data and thus is smoother than each

of the specific models. This indicates that the special
models are undertrained. We evaluated the interpo-
lated language model (eq. (1)) which uses the constant
parameter vector M) for test portion k (Table 1). As
the i\_(k) were estimated on the test portion, the per-
plexity of 487.6 gives a lower bound on what could be
achieved by linearly interpolating the language models,
assuming the category of the text under consideration
was fixed and known.

3.2 Adaptation Experiment

In the adaptation experiment, the parameter vector
A was re-estimated for each new word using eq. (2).
The optimal window length L, which should clearly be
smaller than the typical length of a homogeneous text
passage, was determined in a series of experiments (Te-
ble 2). The results for L = 400 (Table 1d) show an im-
provement of 10% over the baseline model. This adap-
tive model with varying parameter vectors ) is even
better than the one of Table 1b, where the parameters
were chosen optimally but fixed for each text category.
This indicates that also variations within a text cate-
gory are captured by the adaptation.

3.3 Additional Smoothing of Specific
Models Prior to Adaptation

In the experiment above, the specific language mod-
els P; are trained on the respective parts of the whole
corpus such that the adaptation process also has to do
some smoothing. We ran an experiment where addi-
tional smoothing was performed on the specific models
prior to adaptation: each B, is a linear combination

Pe(wnlwa_1) =) axj Pj(walwn-1) (3)
j

For each k, we determined the interpolation parame-
ters aj; to be optimal on the training portion of the
respective category, using a leaving-one-out method
[7]. With these additionally smoothed specific models,
we repeated the adaptation experiment of the previous
section, obtaining about the same performance ( Table
1¢). The optimal window length ( Table 2) is shorter.

Fig. 1 shows the interpolation parameters over the
varying kinds of text categories 1, ...,15. There is fluc-
tuation within the A but for texts of the same category
on the x-axis, certain characteristics can be observed.
For each piece of text, all but a few components A are
almost 0. One observes that some categories behave
similarly, e.g. several kinds of fiction (10, ...,15), while
others, like scientific writings (category 9), are more
specific.
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Table 2: Test set perplexities for different values of the
window length L.

a) Standard specific models (cf. 3.2)

b) Additional smoothing of the specific models (cf. 3.3)

Length | (a) (b)

25 | 533.8 | 492.8

50 | 504.2 | 487.1
100 | 488.6 | 483.6
200 | 482.1 | 482.0
300 | 481.3 | 482.2
400 | 480.7 | 482.4
500 | 481.0 | 482.6

750 | 481.4
1000 | 482.3
2000 | 485.5
5000 | 489.1

10000 | 492.8
50000 | 511.2

3.4 Hard Decision on the Specific Models

The methods described above can be interpreted as
making soft decisions about which specific language
model produces the next word. As an alternative, one
could make a hard decision [8): take the specific lan-
guage model that most likely produced the preceding L
words. In this case we start with the smoothed specific
models from the subsection above. The performance
gain is slightly less with this simple method ( Table 1)
but better than taking the respective specific model for
each text category (Table Ic).

3.5 Cache Model Added

In order to check whether the improvements were not
only due to effects that could be modelled by a cache
language model, we ran a control experiment adding
an additional cache component to our specific models.
The right column of Table I shows that our baseline
cache model is still improved by the adaptation method
and that the gain is by about one third less in this case.

4. DISCUSSION

The corpus used in our experiments is relatively small
(1.1 million words). So, the “specific” language mod-
els are not well trained and, due to the large amount

of smoothing required, they are not as specific as we
would like them to be. However, the results give a
clear indication of the validity of the approach.

The adaptation scheme is general and should work
for a wider range of language models (e. g. n-gram
models, category-based models). It performs well in
identifying different text categories but also follows
smaller deviations in the running text. Such an adap-
tive language model could serve as a universal language
model covering several applications or topics.
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Table 3: Optimal parameter vectors A for the 15 different text categories of the text corpus.

Category || 1 2 3 4 5 6 7 8 9 (1011 ]12] 13| 14| 15
A 291 .091.06.01].06).02}.02]|.09{.006].00].00|.00{.00j.00].01
‘A2 01|.16 .01 | .08 .06].01.13}1.07).01{.00]|.00].00](.00]|.00) .01
A3z .03].00{.24].00|.00|.06].02).00|.07].00{.00(.01|.00|.00j .02
Aq 00|.00.00f.17}.00].01]|.02(.00(.03f.007.00).01(.00].00;.01
As 03].03(.05|.00.18| .16 .01 | .06.10{.00|.00| .02 .01 .00 .05
Ag .03].01].02].02}.02(.05}.02|.01|.01].02|.00(.06|.02(.01|.05
A7 03[(.001.097.06.01].08[.09].03].05|.05].02].02|.01].00}.15
As .03|.06/.00.00].08f.03|.0b|.24|.02].00|.00|.00|.00|.00) .00
Ag 011.021.02].02|.14| .05} .13 | .07|.45} .00|.00] .00 .00 .00} .00
A1g .00|.00.00}.00{.00f{.00].00|.00{.00].12].07].06]|.11|.08| .04
Al .00|.00{.00].00].00].00].00{.00f.00|.08{.13|.04]|.10/{ .10 .02
A .011.00/.00].00|.00].00|.00{.00.00)j.02|.00]|.18(.05].01| .02
A3 .00|.00|.00|.00}].00].00.00[.00;.00|.08].12|.05/}.23] .17 .03
Ala .00|.00{.00.00|.00[.00].00{.00].00).12}.13].06].11/.27| .01
A1 .01[.00].00}.00[.00|.00].00f.00].01].01|.01).01].02].00]|.03
Ageneral .51).61|.51|.64| .44|.52|.51 .43 .24 .50 |.50|.47|.35|.35| .56
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Fig. 1: Interpolation parameters Az over running text from various categories (cf. 3.3). The x-axis corresponds
to about 70,000 words in portions of about 2000 words from text categories as labelled. On the y-axis, the 15
interpolation parameters A are shown (with values between 0 and 1).
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