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ABSTRACT

This paper presents a time-synchronous search
concept in which (a) the language model contexts
are represented in local hypotheses lists, as in N-
best decoding, and where (b) these hypotheses lists
are rescored using a language model in a time-
delayed manner. The concept is shown to work well
on a real 12000-word continuous-speech recognition
task with a phonetic-tree based search. A faster
though approximative search algorithm is presented
which compares favorably well with the exact ones.
- The discussion starts with some new aspects on
word-dependent N-best decoding.

Keywords: continuous speech recognition, search,
N-best decoding, top N.

1. INTRODUCTION - A SHORT REVIEW ON N-BEST
DECODING

Given a spoken utterance, a Viterbi-based speech-recognition system
determines the word sequence given by the most likely state sequence.
With N-best decoding, instead of one sentence only, the recognizer
produces a list of the top-scoring word sequences, usually a pre-specified
number of or all hypotheses within a given beam of log-likelihoods.

Although there exist several previous papers generalizing dynamic
programming to an N-best dynamic programming [1] as well as describing
the concept of 2-best or N-best decoding in speech recognition [2,3], N-
best decoding has become increasingly popular in the speech-recognition
community only around 1989/90 [4,5,6). The algorithms published until
thert suffer from the computation being about linear in N, which is due to
the fact that N theories have to be kept in parallel at each point in the
search space.

New algorithms have significantly reduced the computational costs
of N-best decoding. Word-dependent N-best decoding [7} allows us to work
on n-best lists in the word interiors with n being substantially smaller
than N, while the proper N-best sentence list is built up in a subsequent
Pass. The idea of delaying part of the effort of N-best decoding 10 a second
pass is carried to an extreme in the tree-trellis based search of [8], which
seems to be the most efficient algorithm for time-synchronous N-best
decoding: A forward Viterbi decoding pass is used 1o build up a trellis; a
subsequent time-asynchronous backward A*-search then uses the scores]
stored in the trellis as an exact estimate of the remaining portion. Finally,
a recognizer based on stack decoding (9] has the built-in capability of
Pproducing the top scoring sentences one after the other.

! The word "score” is used interchangeably for "negative log-likelihood"
throughout this paper.

In this paper, we will first review word-dependent N-best decoding
and highlight some new aspects. The word lattice, which is a more
suitable data structure than the N-best sentence list, can be accessed in
several ways. Throughout this paper, the term word lattice is used in such
a way that each word has exactly one starting and one ending point in
time, such that for each possible sentence there is at most one path
through the lattice.

We then explain how local n-best lists can be used to represent
language model contexts to the left (e.g. states in the stochastic finite-state
network defined by the language model). This representation is appropriate
for a time-delayed incorporation of a language model. L¢., instead of using
the language model in a predictive manner, it is incorporated e.g. one word
later by updating the local candidate lists. This concept fits into the N-best
paradigm of incorporating several knowledge sources by rescoring N-best
sentences lists. A faster though approximative search algorithm is then
presented which compares favorably well with the exact one.

Experimental results are given for a speaker-dependent 12000-word
continuous-speech recognition task with a tree-structured search space and a
unigram and a bigram language model.

2. THE WORD-DEPENDENT N-BEST ALGORITHM

2.1 N-Best Decoding: An Overview

All algorithms mentioned in the introduction which can be used
within an integrated time-synchronous search share general principles.

In exact N-best decoding, hypotheses with different histories (the
word sequence so far) are kept separate while hypotheses with the same
history are recombined. More generally, histories can be grouped into
equivalence classes called history classes in this paper, and hypotheses are
recombined if and only if they have the same history class. Two extreme
cases of history classes are the history itself (exact N-best) and one class
only (standard Viterbi search).

Table 1: Comparison of different time-synchronous N-best decoding
schemes.

Algorithm Local Data Structure | Remarks on | Exactness
History | Built up Dur- Search in
Class ing 1st Pass 2nd Pass
Standard one class tree trivial " exact
Viterbi (1-best)
Lattice N- one class word lattice cf. 24 poor ap-
Best proximation
Tree-Trellis one class trellis incl. iso- exact
Based lated-word
alignment
Word-Dep. | predecessor { word lattice cf. 24 good ap-
N-Best word proximation
Exact N-Best | predecessor none not exact
sentence (or tree) necessary




To reduce computation, several algorithms split up the decoding
effort into a time-synchronous part, using a local history class inside
words, and a subsequent time-asynchronous part which performs a search
within a structure stored in the previous pass. Table 1 gives a comparative
overview.

2.2 The Independence Assumption

In the word-dependent N-best algorithm {7], the predecessor word is
taken as local history class. This choice is based on the assumption that
for a hypothesis inside word wy, with history wi,....Wm.1 ., the word
boundary2 between words w1 and wr, does not depend on the previous
words Wi,..., Wm.2 -

While the independence assumption is reasonable for large-
vocabulary recognition, it might be doubtful for other tasks. As an
example, consider a digit-string recognition with zeros pronounced 'oh".
The two confusable strings "00" and "0" cannot both be recovered by the
word-dependent N-best because both hypotheses are assigned the same
history class "0" and are thus recombined when meeting within the
subsequent word. ’

2.3 The Word Lattice

During the first pass of word-dependent N-best decoding, at the end
of each word w, the following information is stored for each hypothesis in
the n-best list:

- The score difference to the top hypothesis score Sopt
- The history class, i.e. the predecessor word.

A pointer to this information as well as score Sop; and a new
history class identifier w (the word which ended) are propagated during the
subsequent within-word search process.

Hence, essentially a lattice is built up, with arcs labelled with
words and score differences to the locally optimal decision. This structure
is more compact than a list of sentences. Indeed, the sentence-spanning N-
best lists typically consist of (rather uninteresting) variations of local wop
candidates (cf. 4.3). If e.g. each of m words in the sentence is easily
confusable with another word, this already can fill a 2™-sized sentence list!

Since the optimization over the word boundaries is carried out
during the first pass, the latice size is kept small, and there is a one-to-one
correspondence between sentences and paths through the lattice. Both
properties can be helpful when using computationally more expensive
knowledge sources or models such as a natural-language parser or cross-
word triphones.

Hence, the word lattice provides a suitable data structure in many
respects: It still contains all score information, the optimization over the
word boundaries is alrcady done, and it is more compact than a list of
senlences. '

2.4 Extracting the N-Best List from the Lattice

There are several ways of extracting an N-best list given the word
lattice produced by the word-dependent N-best algorithm. We consider four
ways (all start at the end of the sentence):

(a) Going backward in time, perform an N-best dynamic programming
search ¢apply the general principle described e.g. in [5]).

2 For the sake of clarity, subtlcties concerning silence between words will
not be discussed in this paper.
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" (b) Perform a depth-first search through the lattice and merge the extracted

sentences according to their scores into a list of length N until a stopping
criterion is met [7].

(c) Perform an A*-search on the lattice, using the score information as an
exact estimate for the remaining part. (The scores rather than the
differences have to be stored in this case. This is [8] without the necessity
of optimizing over the word boundaries and doing the acoustic word
recognition.)

(d) Successively, extract the best sentence Wop from the lattice L by just
deciding for the best arc at each node; then modify the lattice such that

- The new lattice L' contains exactly the same sentences except sentence
WOPI N and that
- All scores are appropriately updated.

The last algorithm (d) which needs no predetermined N in contrast
to (a)-(c) is not outlined here. Any of these lattice search procedures 1akes
considerably less time than the Viterbi decoding pass.

3. LANGUAGE MODEL CONTEXT REPRESENTATION
USING THE N-BEST PARADIGM

3.1 General Concept and Delayed Language Model
Incorporation

In the one-stage dynamic programming search, both acoustic and
language model (LM) constraints are expanded thus forming a huge search
space in which both knowledge sources are incorporated simultaneously.
E.g. using a vocabulary of size V and a stochastic word-based n-gram
language model [10] (with n 2 2), there are VP! different contexts to the
left for each acoustic word wy, - namely its n-1 predecessors Wm.n+1, «ws
wm.1 - which have (potentially) to be realized with V-2 separate copies of
each of the V words of the vocabulary. Even for moderate values of n and
V, the resulting search space may be prohibitively large.

Normally, the search space is built up as follows: First the
language model network is expanded into word copies. The LM is a
probabilistic finite-state grammar for both finite-state and stochastic n-
gram LMs. Second, the word copies are expanded into stochastic finite-
state networks called Hidden Markov models. But we can quite as well first
build a structure representing the acoustic model - ¢.g. a phonetic tree - and
then keep the syntactic left-contexts separate using hypotheses lists. When
doing so, we gain some flexibility concerning the incorporation of
language-model knowledge. - If the context to the left is finer than taking
the predecessor word, the same trick as used in word-dependent N-best
decoding can be applied.

The concept going hand in hand with the N-best representation of
LM context is the concept of delayed LM incorporation. In the N-best
paradigm, LM knowledge is used for recognition in two very different
ways. The conditional probability of a word given a history can be
incorporated in a predictive manner when entering the word during the
search process. The LM can be used as well after the proper recognition
process-to rescore an N-best sentence list or the word lattice. For a full
search, the result is not affected by the time when LM knowledge is
incorporated - as long as all sentence hypotheses are kept separate, which
is a number exponential in the sentence length.

But real large-vocabulary systems use pruning techniques in order 10
achieve acceptable decoding times, $0 it matters when LM knowledge is
incorporated. While arf incorporation of the LM afier recognition reduces
interaction with the probably computationally expensive LM, the
drawback is that the LM cannot control the search process, such that the
optimal sentence using this LM might be pruned during the recognition
pass with a poorer LM,



As a compromise, a delayed incorporation of the LM might be
useful in certain cases. Instead of incorporating the conditional probability
P(Wm!W1,....Wm_1) at the beginning of word wy, , it is taken into account
during search with a certain delay, e.g. at the end of word W, Or two words
later. The basic assumption when using one or a sequence of delayed LMs
is that the hypotheses list of one LM still contains the candidates favored
by the subsequent (more powerful) LM. The delay must be chosen with
regard (0 the trade-off between the accuracy loss and a possible speed-up.

The next section gives an example of a search where the identity of
a word is only known at its end but not at its beginning, such that a 1-
word delay for incorporating the bigram LM is a necessity.

3.2 An Application: Tree-Based Acoustic Search and the
Bigram Language Model

When all words are assumed equally probable (zerogram language
model) or when only the unconditional word probabilities are taken into
account (unigram language model), the acoustic search space can be
organized very efficiently in a tree structure (partially described in [11)),
taking advantage of the fact that many different words share the same
initial phoneme sequences. The LM scores of a unigram LM are added to
the partial scores at the word endings.

In our 12000-word system, the speed-up factor as compared to a
“linear search organization” with a separate copy per word was about 5 for
the search procedure, excluding the log-likelihood calculations.

In order to use this search-space architecture together with a bigram
LM, the context to the left of a word (namely the predecessor word) was

represented in a local hypothesis list, and the score -log p(wmIwm.1)

provided by the bigram LM was incorporated at the end of word Wm.

3.3 An Approximative Search Variant

In order to speed up the search process, the technique of delayed
incorporation ‘of a LM can be combined with some heuristic
approximations {12). Being in the final state of word w, we determine the
optimal predecessor word Vopt Using only the LM incorporated so far as
well as its word boundary topt- Then all words ending at time lopt are
examined as potential predecessors of w, now using the finer LM. The
outlined principle applies to other LMs as well as to other heuristic
assumptions.

Algorithm:

LOOP 1: for every unpruned HMM state in the acoustic tree do
if end of word w is reached with local score S)ocr do:
LOOP 2: get word boundary topt to optimal predecessor word vep,
LOOP 3: Evaluate
Vopt = argmin {S - log p(w|v) | v ending at time oy }
v

Replace Sby S - log P(W|Vopy) , and store all information necessary
for trace-back in trace-back array
LOOP CONTROL 3
LOOP CONTROL 2
LOOP CONTROL 1

While the scores in this algorithm take account of the exact bigram
LM scores, the decision on the word boundary of the optimal predecessor
. Word are not conditioned on the bigram probabilities.

The algorithm reminds of a variant of N-best decoding (cf. [5,4])
called "Lattice N-Best" in [7] which uses a language-model node instead of
the predecessor word as history class. But in contrast to this algorithm, the
hypothesis in the final state of a word g following the word sequence
Wi eees Wiy contains already all bigram LM information of this partial
senience. The approximation is that the LM knowiedge is not available for
the decision taken at the word beginning.

4. EXPERIMENTAL RESULTS

4.1 General Framework

The tests were carried out on a current version of the Philips
speaker-dependent large-vocabulary continuous-speech recognizer
[14,13,11] which succeeds the one used in the SPICOS speech-
understanding system. We use context-independent phone models, the
output probability density functions are modelled as mixtures of Laplacian
densities. The system was tested on a dictation task with a recognition
vocabulary comprising about 12000 words. The utterances - read office
correspondence in German - were recorded in a quiet office environment
using a hand-held microphone. Speaker dependent training and testing were
performed on 2200 and 1100 words, respectively.

Error rate is defined as

(deletions + insertions + substitutions) / spoken words. }
The N-best error rate is calculated by choosing from sentence hypotheses 1
to N the one with the least errors, for each spoken sentence. The N-best
error rate is useful for evaluation tests on N-best decoding but should be
carefully interpreted. E.g. given a fixed word error rate and fixed N, the N-
best word error rate improves with decreasing sentence length!

4.2 The Search Depth of the Word-Dependent N-Best
Decoding

In order to get the top N sentences, word-dependent N-best decoding
only requires a much smaller number n of hypotheses o be kept locaily.
In this pre-experiment, we kept this number n fixed in order to get an idea
on how long the local n-best lists have to be. Table 1 shows that there is
no significant decrease in performance between cases n = 3 and 5. Thus it
seems that relatively short local n-best lists can be used without loss in
accuracy, which is important for achieving short decoding times.

Table 1: N-best word-error rate (defined in 4.1) for three values of n
(speaker M-21, vocabulary 11425 words, test-set perplexity 1792).

N 1 3 6 10 30 50
n=5 262% | 236% | 22.0% | 21.3% | 194% | 189%
n=3 262% | 23.6% | 22.0% | 213% | 19.6% | 18.9%
n=2 26.2% | 23.7% | 22.1% | 21.5% | 20.2% | 19.8%
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4.3 Interpretation of N-Best Error Rates: Sentence
Length, Pruning and Homophones

Although the experiments were focused on the performance of the
search process, we were at first disappointed about the improvement in the
error rate for increasing N. One reason is that with 22.0 words per
sentences on the average, the test sentences are rather long (cf. 4.1). We
also ran two control experiments in order to check two other possible
reasons: The effect of pruning and the high number of confusable words in
our lexicon. In these and the following experiments, the local n-best list
length was not fixed but depended on the scores of the competing
hypotheses, and the test conditions were identical but different from those
in 4.2,

We used two pruning parameters Tglob and Tigc. Tgiob is the
usual pruning threshold which compares every score at time t with the
optimum at this time t; Tjoc does the same only for the hypotheses within
one list compared to the list optimum. Table 2 shows that tight pruning
hurts but that pruning was not responsible for the performance in.Table 1.



Table 2: N-best word-error rates for  Table 3: Error rates for

three different pruning threshold pairs  homophone classes instead
(Tglob: Tioc) (explained in the text) in  of words and two different
logarithmic units: weak (145, 60), history classes (standard
standard (130, 40) and strong (110,40).  pruning).

Speaker M-21, 12306 words, unigram LM of test-set perplexity 1831

Word-Error Rate Homophone-Error Rate
History History Class
Weak Standard Strong Class "Homo-
top "Word" phone”
1 22.9% 22.9% 24.1% 18.1% 18.1%
2 21.9% 21.9% 23.2% 16.9% 16.0%
3 212% 21.2% 22.5% 16.3% 15.8%
4 20.8% 20.7% 22.0% 15.9% 15.5%
5 20.4% 20.4% 21.6% 15.7% 15.1%
6 20.2% 20.2% 21.6% 15.6% 14.8% .
8 19.8% 19.9% 21.2% 154% 14.6%
10 19.6% 19.7% 20.7% 15.2% 14.3%
15 19.2% 19.2% 20.2% 14.8% 14.0%
20 19.2% 19.1% 20.2% 14.8% 13.8%
30 19.1% 18.7% 194% 14.5% 13.5%
50 18.5% 17.7% 18.8% 13.8% 12.7%
75 18.2% 17.2% 18.5% 13.4% 12.5%
100 17.4% 16.7% 18.1% 12.8% 12.2%

Another reason is that there are 728 homophone pairs in the
recognition lexicon of 12306 words. While for some of these clearing the
ambiguities is obviously the task of the LM, this is often impossible even
for a human, e.g. in the case of "zwei” ("two") and "2". So we used the
predecessor homophone class of the predecessor word rather than the word
itself as a history class in the word-(or should we say homophone-)
dependent N-best decoding. This essentially amounts to eliminating
homophonic variants of a higher-ranked sentences from the N-best list.
The error rate is calculated on homophones (two homophones are
considered the same token) instead of word spellings. Table 3 shows the
effects of homophones to the N-best error rate for increasing N.

4.4 Delayed Language Model Incorporation: Using a
Bigram Language Model Together with a Phonetic Tree

Table 4 shows that the delayed bigram LM incorporation of section
3.2 using a phonetic tree (c) works as well as the conventional linear
search (e); (a) are the results for the unigram LM. Differences in the error
rate between (c) and (e) should be due to the different pruning strategies and
pruning parameters. The execution time of (c) lies between those of (a) and

).

Table 4: Word-error rates for four male speakers; 12306-word vocabulary.

a) Unigram LM of test-set perplexity 1831

b) Bigram LM rescoring of 100 best sentences generated using the unigram
LM

c) Delayed incorporation of bigram LM using N-best (cf. 3.3 and 4.4)

d) Approximation to method b) as described in 3.4, cf. 4.5

e) Standard (linear) search with bigram LM of test-set perplexity 1056

@ ® © @ ®
Unigram Bigram Delayed | Approxi- | Bigram
LM on Lauice | Bigram mation LM
M-21 22.9% 22.1% 20.7% 19.9% 20.0%
M-22 28.5% 27.5% 25.4% 24.1% 24.3%
M-24 35.3% 34.8% 30.6% 314% 31.7%
M-25 23.0% 21.9% 18.2% 17.6% 18.0%
average 27.4% 26.6% 23.7% 23.3% 23.5%

Speaker
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4.5 The Approximative Method

The approximative method proposed in 3.3 compares favoﬁbly well
with both linear search with bigram LM and the exact delayed
incorporation of the bigram LM (cf. Table 4, column (d)).

We ran a control experiment (b) in order to check whether we could
also use the word boundary segmentation from the unigram LM and update
the scores using the bigram LM after recognition. Hence, we did a 100-
best recognition using the unigram LM and rescored the sentences
according to the use of the bigram LM. This was clearly suboptimal.
Method (d) outperforms (b) because a better LM incorporated with delay
guides the search in spite of a few suboptimal decisions taken (cf,
discussion in 3.3).
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