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ABSTRACT

This paper reports on some results we obtained when increas-
ing the recognition vocabulary size of our phoneme-based
speaker-dependent continuous-speech recognizer from 1 000
to 10 000 words. The potential search space increased from
46 000 to 516 000 states without problems for the data-driven
search. We focused our attention on two points: The perform-
ance of our phoneme models and the impact of the language
model. The main results are:

(1) Increasing the recognition vocabulary by a factor of 10
(from a perplexity of 917 to 9686) increased the word error
rate by a factor of 2 (from 21.8% to 43.1%). We tested
phoneme models with both discrete probabilities and continu-
ous mixture densities. The mixture density models performed
better; moreover, they saved about half of the search costs.

(2) The language model was found to be very important for a
larger vocabulary size. With a test set perplexity of 388 (i. e.
a reduction by a factor of 25 compared to the case without
bigram model) the error rate decreased by a factor of 2.4. In
order to check how meaningful perplexity is for the prediction
of the system’s performance, we constructed a stochastic
language model with a perplexity of 1000, the size of the
vocabulary used in previous experiments, and got about the
same error rate.

1. INTRODUCTION

The speaker-dependent continuous-speech recognizer de-
scribed in [4,7] has until now been used with a (German)
917-word recogmnon vocabulary. Our goal was to 1nvest1gate
the effects of increasing the recognition vocabulary size from
1 000 to 10 000 words, namely on the performance of our
phoneme models and on the data-driven search. Another point
of our interest was the impact of language modelling on a very
large vocabulary.

The recognition system is based on statistical principles
and on Viterbi approximation - most likely state sequence - in
both training and recognition. The main features of the system
and its environment can be summarized as follows:

Training ‘and test data [9]:

- Recorded in an office environment, close-talking micro-
phone

-~ Read speech

-~ 2x 100 phonetically balanced training sentences compris-
ing 2 x 524 words (a total of 7 minutes of speech)
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- 200 test sentences (databa;; queries) comprising 1391
words

- Small overlap (43 words) of training and testing vocabu-
laries.

Preprocessing [4]:

- Sampling rate 16 kHz

— 30 cepstrally smoothed spectral intensities in logarithmic

units, normalized with respect to average intensity, plus
intensity

- Additionally, first and second temporal differences of
these.

Acoustic-phonetics [3]:

- Standard pronunciation dictionary

- 44 context-independent phonemes

~ Variants of Hidden Markov Models (HMMs) with both
discrete probabilities and continuous mixture densities
(for details, cf. below).

Language Model [6]:

- Recognition vocabularies comprising 917 or 9686 words
- Either no language model constraints or stochastic bigram
language models.

Search [2]:
- Data-driven one-pass dynamic programming search.

2. TEXT CORPORA AND VOCABULARIES

The system was trained on two sessions of 100 phonetically
balanced German sentences which are known as Sotscheck
sentences or Berlin sentences [8,9]. This training vocabulary
is fairly different from the set of words spoken in the test
sessions (the test vocabulary). The two recognition vocabu-
laries taken into account are

- the 917 SPICOS words and
- a9686-word vocabulary including the SPICOS words

(cf. Table 1). The second vocabulary was derived from a
lexicon made up at the University of Bochum within the
ESPRIT project "Linguistic Analysis of the European Lan-
guages” (project no. 291/860). This lexicon consists of words
drawn from newspaper and ESPRIT texts and comprises, for
each word, one single (standard) phonetic transcription and a
morpho-syntactic labelling.
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In informal experiments we had to observe that the merging
of different pronunciation lexica must be done with care:
Inconsistencies between training and testing vocabularies led
to a significant deterioration of performance, as compared to
a lexicon with a consistent phonetic transcription.
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Table 1. Training vocabulary and the two test vocabularies
used in the system.

Speech corpus Sotscheck SPICOS 10 000-word

P P words vocabulary vocabulary
Function Training Recognition Recognition
No. of words 341 917 9686
Average no. of

phonemes per word 4.8 8.5 9.0
Overall no. of

states - 45898 516 211

3. ACOUSTIC-PHONETIC MODELLING

General

In our phoneme-based recognition system, each word in
the lexicon has one single phonetic transcription. Each of
these context-independent phonemes is expanded into (e.g.,
three) phoneme segments in order to incorporate coarticula-
tory effects implicitly into the model. Each segment is then
expanded into a sequence of states for a better temporal
modelling. The phonemes are variants of Hidden Markov
Models (HMMs) with fixed transition probabilities. We did
Viterbi training using only 7 minutes of speech. Both the
discrete approach and the mixture-density approach were
tested within the same framework but differ in several details
(e.g., the number of segments per phoneme) which are due to
system optimizations.

Discrete Modelling

As compared with [5,3], our discrete approach has been
improved in several directions. Like the mixture-density ap-
proach, its feature vectors cover besides the logarithmic spec-
tral energies their first and second temporal differences. As
this increase in dimensionality (in fact, a factor of 2) calls for
a much bigger vector quantization (VQ) codebook and thus
for much more training data, we worked with three different
codebooks for the frequency pattern vector as well as for the
first and second order differences, thus assuming that these
three parts are statistically independent. Typical codebook
sizes for the three feature vector subspaces are 512 (for the
logarithmic spectral energies), 256 (first temporal differ-
ences), and 256 (second temporal differences).

The training is initialized with a (iriple) VQ codebook
derived from all of the four (two male, two female) speakers;
in tests this turned out to be better than taking a (triple)
codebook derived from each single speaker. In each iteration
of the Viterbi training, the probability density functions (pdfs)
were reestimated (moderately smoothed); during .the first
iterations, we also reestimated the prototype vectors of the
codebook using the assignment of the observed vectors based
on the Viterbi alignment.

Mixture Densities

The parametric mixture density models are described in
[3]. For each HMM state, the probability density function of
emitting a vector X is

K
pX) = Y, i P(X)
k=1

where k is the index of the mixture components, with weights
ck and parametric probability density functions py(x). In this
system, the py(x) are Laplacian distributions with a fixed
vector of absolute deviations.

4. THE LANGUAGE MODELS

Our language model is a stochastic bigram model [6] based
on word categories, i. e. the conditional probability

pwplwy ..o Wpo1)

of observing the word wy, after a word sequence wy, ...
is assumed to be

p(Wnlwp.1) = p(wylCp) - p(CylCp1)

where C; denotes w;’s word category and where the N; words
in the category C; are assumed to be equiprobable:
p(w;lCy) = 1/N;. Two language models were constructed by
using two different training sets:

» Wn-1

a) 207 independently collected sentences (comprising 1886
words) of the SPICOS test sentence type (database querxes),
giving a test set perplexity of 388.

b) The same sentences plus further 100 000 words of news-
paper text (weighted twice). The resulting test set perplexity
of 1003 is close to the SPICOS vocabulary size of 917.

87% of the category bigrams seen in the test sentences are
covered by the corpus in a) and 95% by the corpus in b). In
both cases we used a set of morpho-syntactic task-inde-
pendent word categories (cf. Table 2) made up within the
ESPRIT project 291/860. The choice of these categories is
motivated by two reasons: On the one hand it is necessary to
have a detailed representation of so-called function words,
like determiners and prepositions, that occur very frequently
in every language. On the other hand German words can have
several inflectional derivations containing e. g. information
about case and gender. This is why the same word form can
be a member of several categories.

We use 212 of the total number of 355 categories to model
the closed word classes, including particles, conjunctions,
determiners, prepositions, pronouns and punctuation marks.
These categories contain less than 30 words each, m most of

. the cases only one or two words.
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The remaining 143 categories model the open word
classes, including common nouns, proper nouns, adverbs,
adjectives, verbs, numbers and abbreviations. These catego-
ries contain from one to more than 1000 words and subdivide
each part of speech into several morphological classes, e. g.
according to all possible combinations of case, gender and
number in the case of common nouns.



Table 2 shows, for different parts of speech, their number
of categories and words. Due to multiple countings, the sum
of words exceeds the vocabulary size of 9415. This figure
(9415 instead of 9686), which also occurs in Table 6, is due
to the fact that the labelling of words not covered by the
training texts had not been completed when the experiments
were done.

Table 2. Number of categories and of words per part of

Recognition results are shown in Tables 3 to 5 (sum-
marized in Table 6). "Search" denotes the average number of
states per centisecond; this figure is followed by the number
of sentences where the optimal path through the spoken word
sequence is lost due to pruning. The test set consists of 200
sentences comprising 1391 words per speaker. The word error
rate ("Sum") covers deletions ("Del"), insertions ("Ins") and
substitutions of words. S

speech.
Part of speech No. of categories No. of words
Adjective 33 2045 Table 4. Recognition results (Del = deletions,
8
Common noun 38 4 653 g . .
Proper noun 16 1081 Ins = insertions, Sum = word error rate) with
Fullp verb 18 2138 mixture densities and without language model
Auxiliary verb 30 . restrictions for two recognition vocabularies:
Particle / adverb 8 301 a) vocabulary of 917 words,
Determiner 36 42 b) vocabulary of 9686 words.
Pronoun 139 375 Speaker Search |Paths lost| Del Ins Sum
Conjunction 15 84
Preposition 6 125 a)
Miscellaneous 15 82 M-03 6365 4 27% | 14% | 15.7%
End-of-sentence mark 1 ) M-10 7127 0 44% | 32% | 257%
F-01 9274 0 3.5% 2.4% 28.3%
Total: 355 11004 F-10 7560 4 24% | 13% | 17.6%
average: 21.8%
5. EXPERIMENTAL RESULTS b)
M-03 89 964 0 4.2% 4.1% 35.0%
Experimental tests were made for four speakers on one test ;40110 lgg ;gg g g;Z’ zz;‘; gigz’
session each. Apart from minor changes due to the enlarged 10 105 637 0 4‘.6'; 439 305 ,;
memory requirements and the new pronunciation lexicon, i e =
there was no special adaptation of the system to the new task. average: 43.1%
The data-driven search was able to handle the larger search
space, which increased from 46 000 to 516 000 states, without
any problems. For both no language-model constraints and
the bigram model the actual size of the search space was
reduced to about 10% to 20% of the potential search space by
using a pruning technique.
Table 5. Recognition results (Del = deletions,
Ins = insertions, Sum = word error rate) with
Table 3. Recognition results (Del = deletions, mixture densities and different stochastic bigram
Ins = insertions, Sum = word error rate) with dis- language models on the big recognition vocabulary
crete models and without language model restric- a) perplexity = 388, language model trained on
tions for two recognition vocabularies: SPICOS-like sentences,
a) vocabulary of 917 words, b) perplexity = 1003, language model trained on
b) vocabulary of 9686 words. SPICOS-like sentences and newspaper text.
Speaker Search |Paths lost Del Ins Sum Speaker Search |Paths lost Del Ins Sum
a) a)
M-03 15 000 2 2.4% 1.4% 15.6% M-03 44171 4 1.4% 0.3% 10.6%
M-10 15 000 4 5.3% 2.7% 31.2% M-10 37398 5 3.4% 1.9% 22.4%
F-01 18 000 0 7.0% 1.4% 32.9% F-01 58 590 4 3.2% 0.9% 23.4%
F-10 12 000 4 34% 1.4% 22.4% F-10 54 969 4 1.9% 1.3% 14.2%
average: 25.5% average: 17.6%
b) b)
M-03 150 000 0 6.2% 3.8% 42.6% M-03 60 262 5 2.8% 0.8% 15.3%
M-10 156 000 0 17.2% 2.7% 74.2% M-10 74 904 1 3.9% 1.9% 242%
F-01 190 000 0 11.3% 4.8% 64.5% F-01 79 643 1 5.2% 1.7% 32.6%
F-10 152 000 0 10.1% 2.7% 48.8% F-10 73 360 2 3.7% 1.7% 22.0%
average: 57.5% average: 23.5%
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Table 6. Breakdown of all test results (averaged over four

speakers).

Vocabulary Test set Emission Error
size perplexity pdf type rate
917 917 discr. 25.5%
917 917 cont. 21.8%

9 686 9 686 discr. 57.5%
9 686 9 686 cont. 43.1%
9415 1003 cont. 23.5%
9415 388 cont. 17.6%

For the tests without language model, the increase in the
recognition vocabulary size by a factor of 10 caused an
increase by a factor of 2 in the average error rate (Tables 3
and 4). The higher number of errors is mainly due to the
additional short words in the big lexicon. Table 7 shows
recognition examples. For the mixture density models
(Table 4), the average word error rate increased from 21.8%
to 43.1%, compared to an increase from 25.5% to 57.5% for
the discrete models (Table 3). Thus, the mixture densities
performed better than the discrete models.

Table 7. Recognition examples for different language
models.
a) Spoken sentence. b) - €) Recognized sentences:
b) and c) without language model, d) and e) with
bigram language model.
Perplexities: b) 917, c) 9686, d) 1003, e) 388.

von wann ist das letzte Rundschreiben
von waren es das letzte Rundschreiben
form waren es Tass letzte Rundschreiben
von wann ist das letzte Wunsch waren
von wann ist das letzte Rundschreiben

wieviele Antrdge an das BMFT gibt es
wieviele Antrige eines BMFT gib des
wie vieler Antrdge anders BMFT gib des
die vieler Antrdge an das BMFT gibt es
wieviele Antrdge an das BMFT gibt es

The experiments also underline the importance of a lan-
guage model for a large-vocabulary recognition task. Using a
bigram model with a perplexity of 388 which had been trained
on (different) sentences of the same type (database queries),
the error rate could be reduced by a factor of 2.4 (down from
43.1% to 17.6%, cf. Table 5a). Note that this significant gain
in performance was bought at the price of a decrease in
perplexity by a factor of 25 (from 9686 to 388).

It is known [1] that a first approximation of the difficulty

of a recognition task is the test-set perplexity. This was con-

firmed by tests with a bigram model with about the same
perplexity (1003) as the smaller recognition task (917), where
we indeed found error rates within the same range (Tables 4b
and 3a).
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