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This paper describes an approach to the recognition of line drawings and test results.
The approach is based on fitting curve primitives such as straight lines and circular
arcs to the lines in the image to be recognized in order to produce a higher level de-
scription of the image. This technique is being developed within the framework of auto-
matic processing and recognition of line drawings in technical documents, such as mecha-
nical construction drawings or freehand drawings.

1. INTRODUCTION

After scanning, the binary image of the line
drawing is subjected to a standard thinning
algorithm in order to construct the set of
skeletal points. This skeleton of the image
serves as the input for the two-step procedure
studied in this paper. The first step is to
decompose the skeleton into a set of segments,
each of which defines a contour. In the second
step, each segment is to be explained by a se-
quence of curve primitives. Fig. 1 summarizes
the architecture of our system.
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Illustration of system operations

2. SKELETON DECOMPOSITION

The aim of decomposing the skeleton is to ob-
tain segments with a simple structure, less
complexity and homogeneous line width. Each
segment is delimited by two nodes. We define a
set of connected segments as a graph so that a
binary image will be represented by several
graphs, each of which consists of a number of

segments. Two segments are called connected,
if they have at least one node in common or if
there is a sequence of connected segments.

The classification of line elements and nodes
is similar to approaches described by Sakai et
al. 11] and Landy and Cohen [2] and is based
on the B-neighbourhood.

2.1 Pixel classification

For the classification we need two character-
istics of a pixel P. N(P) is the number of
black 8-neighbours of P, T(P) is the number
of black to white, and white to black changes
in the 8-neighbourhood of P.

Based on these definitions we can classify
each pixel P as follows:

a) N(P) = 0 > P isolated point
b) N(P) €2 and T(P) = 2 + P end point

¢) N(P) =2 and T(P) = 4 » P line element
d) N(P) > 2 and T(P) = 4 > P node candidate
e) N(P) arbitrary T(P) > 4 » P X- or T-node

In the case of d) there will be at least two
adjacent nodes that are represented by only
one node in the symbolic description. In this
case there is no bijective mapping of the sym-
bolic nodes to their candidates. To solve this
problem we take the first node candidate as a
node and then we look for line elements among
the mare distant neighbours of P. Thus we get
a connection from the line elements to nade P,
and the corresponding connection points in the
8-neighbourhood of P, which could be node can-
didates, will be defined as line elements. A
flow diagram of the implemented algorithm is
shown in Fig. 2. The algorithm starts at a
node. Thus we have a starting loop which finds
one of the three different types of nodes. De-
termining a segment requires the following
operations: First, the beginning node has to
be found, then the line elements are deter-
mined, and finally the end node is found.
Using the node stack, the algorithm checks
whether there are nodes and line segments to
be processed.
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Figure 2
Flow diagram of the decomposition algorithm

2.2 Classification of line segments

The result of the pixel classification is the
description of the binary image represented by
the skeleton. The next step is the classifica-
tion of individual line segments. A-priori
knowledge is used to separate the graphic in-
formation into. categories such as characters
and the different types of lines that are used
in mechanical construction drawings. For this
purpose we use as features the thickness and
number of segments in a graph. One type of
lines are the border lines which are part of
the graph with the largest number of segments
and which are thicker than other lines. Usu-
ally due to noise, the thickness of a line is
not constant. In particular, there will be
disturbances at the ends of segments as far
example at a free end of a line or in arrows.
Therefore, characteristic values for the line
thickness were calculated by averaging the
thickness only over those segment points that
are sufficiently far away from the segment end
points. Another method is to replace the aver-
age by the median. The median method turned
out to work better in experimental tests.

In order to define a quantitative criterion of
line thickness we need a measure of thickness
for each point of a line. Let P be a skeleton
point of a line in a binary image. The line
thickness of point P is defined as the maximum
of the B-neighborhood of P in the distance
transform assuming 4-connectedness: .

Thickness(P) = max{dist,{(N.8(P))),

where N.8(P) are the points in the B8-neigh-
bourhood of point P.

The method described above was tested on a
number of mechanical construction drawings.
The experimental result showed that about 5%
of the segments were not correctly classi-
fied. These errors are expected to be reduced

by exploiting the a-priori knowlpdge that bor-
der lines are connected.

So far we have considered the graph that is
the largest in terms of the number of seg-
ments. The other graphs represent hidden bor-
der lines, construction lines, or alphanumeric
characters or mathematical symbols. Usually, a
graph representing a character consists of
more than one and less than ten segments, Ad-
ditional features for the purpose of recogni-
tion could be the preference directions and
unconnected segments on imaginary lines.

3. CURVE APPROXIMATION

Fach curve is approximated by a sequence of
curve primitives the parameters of which have
to be determined in such a way that a global
criterion is optimized. This method is similar
in spirit to those described in [3, 4], al-
though there are differences in the global re-
cognition criterion and in the search proce-
dure that finds the best ‘'explanation' in
terms of breakpoints and curve primitives.

3.1 Dynamic programming

For a given curve C = (xj)jzn,,,,,1, the prob-
lem is to find among all possible sets of
breakpoints and allowed curve primitives,
which approximate the partial curves between
these breakpoints, the one that minimizes the
sum of certain partial costs describing the
approximation quality on the partial curves
between the breakpoints. Such a global optimi-
zation problem can be solved by dynamic pro-
gramming. This technique divides the whole
problem into a sequence of smaller ones that
can be solved step by step.
The recursion formula is

A(Q) := 0
. min ., . o .
(*) A(i) := 0<j<i (A(§) + alj,i)) (©<i=<TI)
with the accumulated costs A and the additio-
nal costs a, the goal is to minimize A(I),

The basic assumption to be made is the opti-
mality principle which in this case can be
stated as follows: If an approximation  of C
with breakpoint indices D:il,...,ik,...,iK=I
and curve primitives Pj,...,Pk is optimal
with respectto a criterion (*), then the ap-
proximation up to i=iy is optimal for the
partial curve up to ST

In our approach, the additional costs consist
of a term describing the quality of the ap-
proximation and a term depending on the (type
of) curve primitive:

a(j,i) := min{d(P,Cji) + p(P): P € Sji=
a certain seg of curve primitives}.

d(P, CJI) will generally be some distance
measute between a curve primitive P (e.g., a
line or circular are) and the partial curve
Cji from xj to xj. The penalty p(P) is
an extra cost for each curve primitive. As a



typical "example, let for all j, 1, Sii be
the set of all lines on the plane, d(L,Cji) be
the sum of the squared euclidean distances of
the points xj,...,xij to the line L, and
p{l.) be a constant ¢ » 0. Then {*) reduces to

min
lines L

. min
U0

Minimizing A{I) means to find a line approxi-
matinn of C, which minimizes both the sum of
all deviation ercors and the number of lines,
the latter weigthed with c. A big penalty val-
ue ¢ results in a coarse approximation by few
lines and vice versa. The numbec X of curve
primitives is not specified in advance but a
result af the recognition process. For the to-
tal deviation ecror A of an apnroximation with
1 lines, the inequality 4.2 A(I) - l+c holds.
In order to construct the optimal solution, it
is suitable to keep track of the decisions
taken in (*) in an additional backpointer
acray.

A(1L) (A(§) + ¢ + d(L,Cji)) .

Generally, the dynamic programming approach
described above finds the glebal optimum mini-
mizing the final accumulated cost A{I). Its
flexibility offers a wide range of variations:

The set of potential curve primitives Sji
may e.g. consist of straight lines, circular
arcs, splines etc., or subsets of these, e.q.
curves only, which pass through the break-
points x3, xj, only lines of specific di-
rections, and so on. It is an important advan-
tage that a-priori knowledge can often very
easily be incorporated in the recognition al-
gorithm,

The deviation measure d may be a distance
measure or mare generally any cost function
that expresses the quality of the approxima-
tion. If, e.g., the distance between a curve
arimitive and a partial curve should be smal-
ler than a value R, define

uxst(P,Cji) if dist(P,CJi) <R
d(P,Cji) ==
» else .

The penalty p counterbalances the algorithm's
tendency of producing a vast number of break-
points in order to find an approximation with
the least deviation possible. It also helps
counterbalancing with respect to different
subsets of Sji: Imagine, for = example,
Sji = {lines} U {circles}. Since a line can
be viewed as a circle with infinite radius,
typically for a digital curve a better approx-
imation can be reached by a circle rather than
a lire. This effect can be compensated hy the
constraint: p(circle) > p(line).

3.2 Pruning

The computational complexity of the dynamic
programming algorithm can be rather high. In
order to reduce the search effort, it is use-~
ful to investigate pruning strategies which
reduce the search effort significantly: In-
stead of the i points j = 0,...,i-1 in formula
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(*), most of which are unlikely ‘candidates
forthe best fitting predecessor of i, we only
investigate indices j € M{i), where M(i) is
a suitably chosen non-empty subset of
{0,...,i-1}. The following two pruning vari-
ants have been developed:

1. Let M{i) be those predecessors j of i,
the accumulated scare A(j) of which is not
too bad with cespect to A(i-1), i.e. choose
a suitable real number & of about the size of
p and define

M(1) := {0}
M(1) = {EM-1) U {i-1}: AGG) < A1) + 8} (0 <4 <D,

If the pruning value is smaller than the pen-
alty for a new curve primitive, too many good
candidates directly preceeding i are pruned.
So in that case, choose a suitable integer
and modify the definition according to

ML) 1= {J€ M- AGG) < AGL-T) + 8} U {ik,...,i-1],

2. Points on a straight line segment are un-

likely to be breakpoints and should be prun-

ed. Choose a sufficiently small value € and an

integer % and define

M, eli) = {j: either (0 < j<korlk<j<I), or
there is a line that approximates
the partial curve Cj.i jek better
than £; .

Clearly, these pruning strategies can be com-
bined and extended. Only method 1, with param-
eters derived from a few tests, reduced the
search space by a factor of 10 without signi-
ficant effect on the approximation accuracy.

4. EXPERIMENTAL RESULTS

Experimental tests were performed for straight
line segments as curve primitives, The error
criterion of each segment was the sum over the
squared distances between the straight line
and the curve points. Computing the best fit-
ting straight line for a given curve segment

" then amounts to determining the smallest ei-

genvalue of a two-dimensional scatter matrix.
By wusing the method of running sums, the
overall cost for computing d(P,Cjj) is
independent of the number of points of the
curve segments.

Therefore, the computational complexity of the
full search algorithm is proportional to the
square of overall number of curve points. A
similar time complexity was obtained for a
dynamic programming approach to nonlinear
smoothing [5 . The important feature of the
approach presented here is that the global
optimality of the solution 1is guaranteed,
which is not true for a number of other ap-
proaches, such as the Split-and-Merge-
Algorithm for polygonal approximations by
Pavlidis [pp. 179, 6].

Fig. 3 shows the application of the algorithm
to a freehand drawing for varying degrees of
approximation. The points of the approximation
corresponding to breakpoints are marked by
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b)

c)

Figure 3
Application of curve fitting to a freehand
drawing: a) freehand drawing,
" b), c) results of curve fitting for two
degrees of approximation

circles. The deviations of the straight lines
from the original picture are negligible in
Fig. c, where appropriate penalties are cho-
sen. Fig. &4 shows the resulting straight-line
approximations for a mechanical construction
drawing. In this case the distortion is vis-
ible for curved lines only.

5. SUMMARY

We have studied the application of optimal
curve fitting to skeletized images for the
purpose of pattern recognition. The optimiza-
tion is based on dynamic programming, the com-
putational complexity of which can be drastic-
ally reduced by pruning unlikely hypotheses.
Experimental tests have been presented for
freehand drawings and mechanical construction
. drawings.
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Figure 4
Application of curve fitting to a mechanical
construction drawing: a) skeletized input
image, b) result of curve fitting
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